[D66] Moeilijk! (On p-adic numbers and the invalidation of the decimal notation system of numbers)

René Oudeweg roudeweg at gmail.com
Fri Feb 2 09:39:59 CET 2024


L.S.

Wie wel eens van *p-adic* getallen heeft gehoord weet dat rekenen met 
deze getallen merkwaardige resultaten oplevert:

|...6666667 × 3 -----------|

                                 1


De ellipsis aan het begin geeft aan dat ...6666667 gelezen moet worden 
als een oneindige expansie van zessen. De meesten van ons zijn wel 
bekend met de ellipsis achter de komma: bijv 0.9999999... = 1. P-adic 
heeft een ellipsis voor de komma. Nu zou je zeggen dat '...66667.0' 
groter moet zijn dan 1 als je het getal vermenigvuldigt met 3. Nee, het 
resultaat van deze vermenigvuldiging is precies 1 (!).  Frappant niet? 
Het probleem is dat ...66666667 ook gelezen zou kunnen worden als een 
geheel getal terwijl het in feite een extensie is van de rationele 
getallen (Q).

...66666666667 is dan ook de representatie van, jawel: 1/3.

|
|

|Nog een voorbeeld dat resulteert in 1:|

|
|

|...857142857143   (= 1/7)
||× 7
||    -----------
|                                1


Dit wordt ons niet op de basisschool of voortgezet onderwijs geleerd. 
Waarom niet? Economie gebruikt de de natuurlijke getallen N en de 
rationele getallen Q. Meestal rond men af. 12..9 euro maakt men 13 euro 
van. Met p-adic kan men geen economische handelingen berekenen (bijv. 
het tellen van vis) of de dimensies van commodities ontwerpen en 
berekenen. Alleen getaltheoretici gebruiken p-adic.

We zitten nu met een leesprobleem:

    66666667

is uiteraard niet gelijk aan

...66666667

en

...66666667

divergeert ook niet naar oneindigheid

Het leesprobleem is breder: *De decimale notatie is ongeldig* vanwege de 
decimale expansie.

' 11'  stelt in de natuurlijk getallen in base-10 het getal elf voor.

in p-adic (base 10) stelt

...11  = 1/9

De gehele getallen gerepresenteerd door getallen voor de komma kunnen 
onmogelijk ook een kleiner rationeel getal zijn (een breuk dus)! Kortom, 
het is een notatieprobleem van getallen omdat we nu eenmaal werken met 
een bepaalde base number (10 meestal) en geen oneindig aantal symbolen 
en glyphs voor elk natuurlijk getal hebben. Dit ongewoon notatieprobleem 
en hoe de grootte van het getal te interpreteren resulteert in de 
invalidatie van de decimale notatie.

    ...999999.0 = m
    ...999990.0 = 10 m

    9 = -9 m
    m = -1

Derhalve is ...999999.0 = -1 !

Het notatieprobleem omvat dus niet de grootte maar ook of het positieve 
of negatieve getallen zijn.

Nu kan men het argument aankomen dat men geen natuurlijk getal kan 
optellen bij een p-adic getal. Echter dit kan wel:

    ChatGPT:

    Yes, one can add a natural number to a p-adic number. In general,
    the p-adic numbers form a field, meaning that addition and
    multiplication are well-defined operations, and they satisfy the
    usual properties like associativity, commutativity, and distributivity.

    Let's denote a natural number nn and a p-adic number
    …akak−1…a1a0…ak​ak−1​…a1​a0​(in base-p notation). To add the natural
    number to the p-adic number, you simply add the corresponding digits
    position-wise:

    n+…akak−1…a1a0n+…ak​ak−1​…a1​a0​

    For example, if you want to add the natural number 123 to the
    10-adic number …987654321, you would add digit by digit:

    123+…987654321=…987654444

    In general, the addition of a natural number to a p-adic number does
    not pose any issues, and the result is a well-defined p-adic number.


    RO:
    are there paradoxes with addition and multiplication given
    properties like associativity, commutativity, and distributivity.
    ChatGPT

    ChatGPT:

    While p-adic numbers have some unusual properties compared to real
    numbers, and their arithmetic is different, there are no inherent
    paradoxes with addition and multiplication within the context of the
    p-adic number system itself. The p-adic numbers form a field, and
    they obey the usual algebraic properties like associativity,
    commutativity, and distributivity.

    However, the p-adic numbers can be counterintuitive when compared to
    the real numbers. One notable difference is that the p-adic norm (a
    measure of size) behaves differently. In particular, the p-adic norm
    satisfies the ultrametric inequality:

    ∣x+y∣p≤max⁡(∣x∣p,∣y∣p)∣x+y∣p​≤max(∣x∣p​,∣y∣p​)

    This means that in the p-adic numbers, the distance between two
    numbers is determined more by the larger of the two numbers rather
    than the sum of their absolute values.

    These differences can lead to interesting and sometimes unexpected
    results. For example, some sequences of rational numbers that
    converge in the real numbers may diverge in the p-adic numbers, and
    vice versa.

    While these differences might seem paradoxical at first, they arise
    from the unique structure of the p-adic numbers and do not violate
    the fundamental properties of the p-adic arithmetic. They are simply
    a reflection of the fact that the p-adic numbers are a different
    completion of the rational numbers compared to the real numbers.


    RO:
    what are the problems of the decimal notation and algebraic
    properties such as associativity, commutativity, and distributivity
    givem some axioms

    ChatGPT:

    The decimal notation and the algebraic properties you
    mentioned—associativity, commutativity, and distributivity—are
    foundational concepts in number systems. However, the decimal
    notation and these algebraic properties do not come without their
    own challenges or limitations. Here are some considerations:

     1.

        *Repeating Decimals:*

          * The representation of certain fractions in decimal notation
            results in repeating or non-terminating decimals. While
            these representations are accurate, they can make arithmetic
            operations less straightforward.
     2.

        *Real Numbers vs. Computable Numbers:*

          * Not all real numbers can be represented precisely in decimal
            notation, particularly irrational numbers like π or the
            square root of 2. This limitation can lead to rounding
            errors in computations.
     3.

        *Finite Precision:*

          * In practical applications, computers have finite precision.
            Representing real numbers with infinite precision in a
            finite amount of memory can lead to rounding and
            approximation errors.
     4.

        *Associativity, Commutativity, and Distributivity:*

          * While these properties hold for most familiar number
            systems, there are mathematical structures where they may
            not. For example, non-commutative algebraic structures like
            matrices or non-associative structures can violate these
            properties.
     5.

        *Field Axioms:*

          * The properties of associativity, commutativity, and
            distributivity are part of the field axioms that define the
            structure of fields. However, not all algebraic systems
            satisfy these axioms. For instance, the integers under
            subtraction do not form a field because subtraction is not
            commutative.
     6.

        *Division by Zero:*

          * Division by zero is undefined in many number systems,
            including the real numbers. It can lead to inconsistencies
            and undefined results in algebraic expressions.
     7.

        *Imaginary and Complex Numbers:*

          * The extension of real numbers to complex numbers involves
            the introduction of the imaginary unit 'i' and the
            consideration of complex conjugates. This departure from
            real numbers might seem unintuitive at first.

    In summary, while the decimal notation and standard algebraic
    properties are foundational and widely applicable, they do have
    limitations and may not fully capture the complexities of all
    mathematical structures. Mathematicians explore various number
    systems and algebraic structures to address specific needs and to
    study mathematical phenomena more deeply.

    Associativity, commutativity, and distributivity are fundamental
    properties that govern operations in algebraic structures, such as
    sets equipped with binary operations. These properties are crucial
    in defining and understanding mathematical structures, including
    groups, rings, and fields.

     1.

        *Associativity:*

          *

            *Definition:* An operation is associative if the grouping of
            elements does not affect the result of the operation.

          *

            *In symbols:* For an operation ∗∗, it is associative if
            (a∗b)∗c=a∗(b∗c)(a∗b)∗c=a∗(b∗c) holds for all elements aa,
            bb, and cc in the set.

          *

            *Example:* Addition and multiplication of real numbers are
            associative:

              o (a+b)+c=a+(b+c)
                  (a+b)+c=a+(b+c) for addition.
              o (a⋅b)⋅c=a⋅(b⋅c)
                (a⋅b)⋅c=a⋅(b⋅c) for multiplication.
     2.

        *Commutativity:*

          *

            *Definition:* An operation is commutative (or abelian) if
            the order of elements does not affect the result of the
            operation.

          *

            *In symbols:* For an operation ∗∗, it is commutative if a∗b=b∗a
            a∗b=b∗a holds for all elements aa and bb in the set.

          *

            *Example:* Addition is commutative for real numbers (a+b=b+a
                                 a+b=b+a),
            but multiplication is not (a⋅b≠b⋅a
                                                            a⋅b=b⋅a in
            general).

     3.

        *Distributivity:*

          *

            *Definition:* Distributivity relates two operations (usually
            addition and multiplication) and describes how one operation
            interacts with the other.

          *

            *In symbols:* For operations ∗∗ and ∘∘, distributivity
            implies that


            a∗(b∘c)=(a∗b)∘(a∗c)
            a∗(b∘c)=(a∗b)∘(a∗c).

          *

            *Example:* Distributivity holds for multiplication over
            addition in real numbers: a⋅(b+c)=a⋅b+a⋅c
            a⋅(b+c)=a⋅b+a⋅c.

    These properties play a crucial role in algebraic structures. For
    instance:

      * A group is a set equipped with an associative operation and an
        identity element.
      * A ring is a set equipped with two operations (usually addition
        and multiplication) that satisfy associativity, distributivity,
        and the existence of an additive identity.
      * A field is a ring in which multiplication is also commutative,
        and every nonzero element has a multiplicative inverse.

    Understanding these properties is essential for working with
    algebraic structures and ensuring the consistency of mathematical
    operations.


    Subtraction is not commutative, meaning that the order of the
    numbers matters. In general, a−ba−b is not equal to b−ab−a.

    The reason for this lack of commutativity in subtraction lies in the
    definition of subtraction itself. Subtraction is essentially the
    inverse operation of addition. If you consider the expression
    a−ba−b, it is equivalent to adding the additive inverse of bb to aa.

    Mathematically, a−ba−b can be defined as a+(−b)a+(−b), where −b−b is
    the additive inverse of bb. So, when you reverse the order and have
    b−ab−a, it is equivalent to b+(−a)b+(−a).

    In general, a+(−b)a+(−b) is not the same as b+(−a)b+(−a). The
    additive inverses −b−b and −a−a might not be the same, unless
    a=ba=b. Therefore, subtraction is not commutative except when the
    two numbers are equal.

    For example:

      * 3−23−2 is not equal to 2−32−3, as 3−2=13−2=1 and 2−3=−12−3=−1.

    It's important to note that addition is commutative, but subtraction
    is not.



R.O.

--

ChatGPT:


    P-adic numbers are a type of number system that extends the rational
    numbers. They are often denoted by ℚₚ, where p is a prime number.
    The p-adic numbers were introduced by Kurt Hensel in 1897. The key
    idea is to define a metric that measures the size of a number in
    relation to its divisibility by powers of p.

    The p-adic numbers are equipped with a p-adic valuation, which
    measures the highest power of p that divides a given rational
    number. The p-adic norm, denoted by |x|ₚ, is defined as follows:

      * If x ≠ 0, then |x|ₚ = p⁻ᵏ, where k is the highest power of p
        that divides x.
      * If x = 0, then |0|ₚ = 0.

    Let's look at some examples of p-adic numbers and their arithmetic,
    using the 2-adic numbers (p = 2) for simplicity:

     1.

        *Example of 2-adic number:* Let's consider the sequence of
        rational numbers {1, 2, 4, 8, 16, ...}. In the 2-adic numbers,
        these converge to a single 2-adic number. For instance, the
        limit of this sequence is represented by the 2-adic number 1 + 2
        + 4 + 8 + 16 + ... = -1.

     2.

        *Addition in 2-adic numbers:* If you want to add two 2-adic
        numbers, you can perform the addition digit by digit. For example:

        scss

     2.

        |1 + 2 + 4 + 8 + 16 + ... (2-adic representation of -1) |

      * 1 + 2 + 4 + 8 + 16 + ... (2-adic representation of -1)

    ------------------------------------------------------------------------


https://en.wikipedia.org/wiki/P-adic_number
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://www.tuxtown.net/pipermail/d66/attachments/20240202/f64d1df3/attachment-0001.html>


More information about the D66 mailing list