<!DOCTYPE html>
<html>
  <head>

    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body vlink="#551A8B" text="#000000" link="#0B6CDA" bgcolor="#c0bfbc"
    alink="#EE0000">
    <p>L.S.</p>
    <p>Wie wel eens van <b>p-adic</b> getallen heeft gehoord weet dat
      rekenen met deze getallen merkwaardige resultaten oplevert:</p>
    <pre><code class="!whitespace-pre hljs language-lua">     ..<span
    class="hljs-number">.6666667</span>
    ×         <span class="hljs-number">3</span>
    <span class="hljs-comment">-----------</span></code></pre>
    <p></p>
    <p>                                1</p>
    <p><br>
    </p>
    <p>De ellipsis aan het begin geeft aan dat ...6666667 gelezen moet
      worden als een oneindige expansie van zessen. De meesten van ons
      zijn wel bekend met de ellipsis achter de komma: bijv 0.9999999...
      = 1. P-adic heeft een ellipsis voor de komma. Nu zou je zeggen dat
      '...66667.0' groter moet zijn dan 1 als je het getal
      vermenigvuldigt met 3. Nee, het resultaat van deze
      vermenigvuldiging is precies 1 (!).  Frappant niet? Het probleem
      is dat ...66666667 ook gelezen zou kunnen worden als een geheel
      getal terwijl het in feite een extensie is van de rationele
      getallen (Q). <br>
    </p>
    <p>...66666666667 is dan ook de representatie van, jawel: 1/3.</p>
    <p><code class="!whitespace-pre hljs language-lua"><br>
      </code></p>
    <p><code class="!whitespace-pre hljs language-lua">Nog een voorbeeld
        dat resulteert in 1:</code></p>
    <p><code class="!whitespace-pre hljs language-lua"><br>
      </code></p>
    <p><code class="!whitespace-pre hljs language-lua"> ..<span
          class="hljs-number">.857142857143   (= 1/7)<br>
        </span></code><code class="!whitespace-pre hljs language-lua">
        ×             <span class="hljs-number">7<br>
        </span></code><code class="!whitespace-pre hljs language-lua"><span
          class="hljs-comment">    -----------<br>
        </span></code>                                1</p>
    <p></p>
    <p><br>
    </p>
    <p>Dit wordt ons niet op de basisschool of voortgezet onderwijs
      geleerd. Waarom niet? Economie gebruikt de de natuurlijke getallen
      N en de rationele getallen Q. Meestal rond men af. 12..9 euro
      maakt men 13 euro van. Met p-adic kan men geen economische
      handelingen berekenen (bijv. het tellen van vis) of de dimensies
      van commodities ontwerpen en berekenen. Alleen getaltheoretici
      gebruiken p-adic.</p>
    <p>We zitten nu met een leesprobleem:<br>
    </p>
    <p>   66666667</p>
    <p>is uiteraard niet gelijk aan<br>
    </p>
    <p>...66666667</p>
    <p>en</p>
    <p>...66666667</p>
    <p>divergeert ook niet naar oneindigheid</p>
    <p>Het leesprobleem is breder: <b>De decimale notatie is ongeldig</b>
      vanwege de decimale expansie.<br>
    </p>
    <p>' 11'  stelt in de natuurlijk getallen in base-10 het getal elf
      voor.</p>
    <p>in p-adic (base 10) stelt</p>
    <p>...11  = 1/9</p>
    <p>De gehele getallen gerepresenteerd door getallen voor de komma
      kunnen onmogelijk ook een kleiner rationeel getal zijn (een breuk
      dus)! Kortom, het is een notatieprobleem van getallen omdat we nu
      eenmaal werken met een bepaalde base number (10 meestal) en geen
      oneindig aantal symbolen en glyphs voor elk natuurlijk getal
      hebben. Dit ongewoon notatieprobleem en hoe de grootte van het
      getal te interpreteren resulteert in de invalidatie van de
      decimale notatie.<br>
    </p>
    <blockquote>
      <p>...999999.0 = m <br>
        ...999990.0 = 10 m</p>
      <p>9 = -9 m<br>
        m = -1 <br>
      </p>
    </blockquote>
    <p>Derhalve is ...999999.0 = -1 !</p>
    <p>Het notatieprobleem omvat dus niet de grootte maar ook of het
      positieve of negatieve getallen zijn. <br>
    </p>
    <p>Nu kan men het argument aankomen dat men geen natuurlijk getal
      kan optellen bij een p-adic getal. Echter dit kan wel:</p>
    <blockquote>
      <p><font color="#a51d2d">ChatGPT:<br>
        </font></p>
      <div class="flex flex-grow flex-col max-w-full">
        <div data-message-author-role="assistant"
          data-message-id="c9107405-f7cf-4a6b-878c-fcb3f03a0a67"
class="min-h-[20px] text-message flex flex-col items-start gap-3 whitespace-pre-wrap break-words [.text-message+&]:mt-5 overflow-x-auto">
          <div
class="markdown prose w-full break-words dark:prose-invert dark">
            <p><font color="#a51d2d">Yes, one can add a natural number
                to a p-adic number. In general, the p-adic numbers form
                a field, meaning that addition and multiplication are
                well-defined operations, and they satisfy the usual
                properties like associativity, commutativity, and
                distributivity.</font></p>
            <p><font color="#a51d2d">Let's denote a natural number <span
                  class="math math-inline"><span class="katex"><span
                      class="katex-mathml"><math
                        xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow></semantics></math></span><span
                      class="katex-html" aria-hidden="true"><span
                        class="base"><span class="strut"
                          style="height: 0.4306em;"></span><span
                          class="mord mathnormal">n</span></span></span></span></span>
                and a p-adic number <span class="math math-inline"><span
                    class="katex"><span class="katex-mathml"><math
                        xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>…</mo><msub><mi>a</mi><mi>k</mi></msub><msub><mi>a</mi><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>…</mo><msub><mi>a</mi><mn>1</mn></msub><msub><mi>a</mi><mn>0</mn></msub></mrow></semantics></math></span><span
                      class="katex-html" aria-hidden="true"><span
                        class="base"><span class="strut"
style="height: 0.6389em; vertical-align: -0.2083em;"></span><span
                          class="minner">…</span><span class="mspace"
                          style="margin-right: 0.1667em;"></span><span
                          class="mord"><span class="mord mathnormal">a</span><span
                            class="msupsub"><span
                              class="vlist-t vlist-t2"><span
                                class="vlist-r"><span class="vlist"
                                  style="height: 0.3361em;"><span
style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span
                                      class="pstrut"
                                      style="height: 2.7em;"></span><span
class="sizing reset-size6 size3 mtight"><span
                                        class="mord mathnormal mtight"
                                        style="margin-right: 0.03148em;">k</span></span></span></span><span
                                  class="vlist-s">​</span></span><span
                                class="vlist-r"><span class="vlist"
                                  style="height: 0.15em;"><span></span></span></span></span></span></span><span
                          class="mord"><span class="mord mathnormal">a</span><span
                            class="msupsub"><span
                              class="vlist-t vlist-t2"><span
                                class="vlist-r"><span class="vlist"
                                  style="height: 0.3361em;"><span
style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span
                                      class="pstrut"
                                      style="height: 2.7em;"></span><span
class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span
                                          class="mord mathnormal mtight"
style="margin-right: 0.03148em;">k</span><span class="mbin mtight">−</span><span
                                          class="mord mtight">1</span></span></span></span></span><span
                                  class="vlist-s">​</span></span><span
                                class="vlist-r"><span class="vlist"
                                  style="height: 0.2083em;"><span></span></span></span></span></span></span><span
                          class="mspace" style="margin-right: 0.1667em;"></span><span
                          class="minner">…</span><span class="mspace"
                          style="margin-right: 0.1667em;"></span><span
                          class="mord"><span class="mord mathnormal">a</span><span
                            class="msupsub"><span
                              class="vlist-t vlist-t2"><span
                                class="vlist-r"><span class="vlist"
                                  style="height: 0.3011em;"><span
style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span
                                      class="pstrut"
                                      style="height: 2.7em;"></span><span
class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span
                                  class="vlist-s">​</span></span><span
                                class="vlist-r"><span class="vlist"
                                  style="height: 0.15em;"><span></span></span></span></span></span></span><span
                          class="mord"><span class="mord mathnormal">a</span><span
                            class="msupsub"><span
                              class="vlist-t vlist-t2"><span
                                class="vlist-r"><span class="vlist"
                                  style="height: 0.3011em;"><span
style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span
                                      class="pstrut"
                                      style="height: 2.7em;"></span><span
class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span
                                  class="vlist-s">​</span></span><span
                                class="vlist-r"><span class="vlist"
                                  style="height: 0.15em;"><span></span></span></span></span></span></span></span></span></span></span>
                (in base-p notation). To add the natural number to the
                p-adic number, you simply add the corresponding digits
                position-wise:</font></p>
            <p><font color="#a51d2d"><span class="math math-inline"><span
                    class="katex"><span class="katex-mathml"><math
                        xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi><mo>+</mo><mo>…</mo><msub><mi>a</mi><mi>k</mi></msub><msub><mi>a</mi><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>…</mo><msub><mi>a</mi><mn>1</mn></msub><msub><mi>a</mi><mn>0</mn></msub></mrow></semantics></math></span><span
                      class="katex-html" aria-hidden="true"><span
                        class="base"><span class="strut"
style="height: 0.6667em; vertical-align: -0.0833em;"></span><span
                          class="mord mathnormal">n</span><span
                          class="mspace" style="margin-right: 0.2222em;"></span><span
                          class="mbin">+</span><span class="mspace"
                          style="margin-right: 0.2222em;"></span></span><span
                        class="base"><span class="strut"
style="height: 0.6389em; vertical-align: -0.2083em;"></span><span
                          class="minner">…</span><span class="mspace"
                          style="margin-right: 0.1667em;"></span><span
                          class="mord"><span class="mord mathnormal">a</span><span
                            class="msupsub"><span
                              class="vlist-t vlist-t2"><span
                                class="vlist-r"><span class="vlist"
                                  style="height: 0.3361em;"><span
style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span
                                      class="pstrut"
                                      style="height: 2.7em;"></span><span
class="sizing reset-size6 size3 mtight"><span
                                        class="mord mathnormal mtight"
                                        style="margin-right: 0.03148em;">k</span></span></span></span><span
                                  class="vlist-s">​</span></span><span
                                class="vlist-r"><span class="vlist"
                                  style="height: 0.15em;"><span></span></span></span></span></span></span><span
                          class="mord"><span class="mord mathnormal">a</span><span
                            class="msupsub"><span
                              class="vlist-t vlist-t2"><span
                                class="vlist-r"><span class="vlist"
                                  style="height: 0.3361em;"><span
style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span
                                      class="pstrut"
                                      style="height: 2.7em;"></span><span
class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span
                                          class="mord mathnormal mtight"
style="margin-right: 0.03148em;">k</span><span class="mbin mtight">−</span><span
                                          class="mord mtight">1</span></span></span></span></span><span
                                  class="vlist-s">​</span></span><span
                                class="vlist-r"><span class="vlist"
                                  style="height: 0.2083em;"><span></span></span></span></span></span></span><span
                          class="mspace" style="margin-right: 0.1667em;"></span><span
                          class="minner">…</span><span class="mspace"
                          style="margin-right: 0.1667em;"></span><span
                          class="mord"><span class="mord mathnormal">a</span><span
                            class="msupsub"><span
                              class="vlist-t vlist-t2"><span
                                class="vlist-r"><span class="vlist"
                                  style="height: 0.3011em;"><span
style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span
                                      class="pstrut"
                                      style="height: 2.7em;"></span><span
class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span
                                  class="vlist-s">​</span></span><span
                                class="vlist-r"><span class="vlist"
                                  style="height: 0.15em;"><span></span></span></span></span></span></span><span
                          class="mord"><span class="mord mathnormal">a</span><span
                            class="msupsub"><span
                              class="vlist-t vlist-t2"><span
                                class="vlist-r"><span class="vlist"
                                  style="height: 0.3011em;"><span
style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span
                                      class="pstrut"
                                      style="height: 2.7em;"></span><span
class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span
                                  class="vlist-s">​</span></span><span
                                class="vlist-r"><span class="vlist"
                                  style="height: 0.15em;"><span></span></span></span></span></span></span></span></span></span></span></font></p>
            <p><font color="#a51d2d">For example, if you want to add the
                natural number 123 to the 10-adic number <span
                  class="math math-inline"><span class="katex"><span
                      class="katex-mathml"><math
                        xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>…</mo><mn>987654321</mn></mrow></semantics></math></span></span></span>,
                you would add digit by digit:</font></p>
            <p><font color="#a51d2d"><span class="math math-inline"><span
                    class="katex"><span class="katex-mathml"><math
                        xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>123</mn><mo>+</mo><mo>…</mo><mn>987654321</mn><mo>=</mo></mrow></semantics></math></span><span
                      class="katex-html" aria-hidden="true"><span
                        class="base"><span class="mspace"
                          style="margin-right: 0.2778em;"></span></span><span
                        class="base"><span class="strut"
                          style="height: 0.6444em;"></span><span
                          class="minner">…</span><span class="mspace"
                          style="margin-right: 0.1667em;"></span><span
                          class="mord">987654444</span></span></span></span></span></font></p>
            <p><font color="#a51d2d">In general, the addition of a
                natural number to a p-adic number does not pose any
                issues, and the result is a well-defined p-adic number.</font></p>
          </div>
        </div>
      </div>
    </blockquote>
    <div class="mt-1 flex justify-start gap-3 empty:hidden">
      <div
class="text-gray-400 flex self-end lg:self-center justify-center lg:justify-start mt-0 -ml-1 visible"><font
          color="#a51d2d"><span class="" data-state="closed"></span></font></div>
    </div>
    <div class="flex"><font color="#a51d2d"><span class=""
          data-state="closed"><br>
        </span></font></div>
    <blockquote>
      <div class="flex-col gap-1 md:gap-3">
        <div class="flex flex-grow flex-col max-w-full">
          <div data-message-author-role="user"
            data-message-id="aaa216b7-8618-4b41-895d-288f8e6fe731"
class="min-h-[20px] text-message flex flex-col items-start gap-3 whitespace-pre-wrap break-words [.text-message+&]:mt-5 overflow-x-auto">
            <div class=""><font color="#a51d2d">RO: </font></div>
            <div class=""><font color="#a51d2d">are there paradoxes with
                addition and multiplication given properties like
                associativity, commutativity, and distributivity.</font></div>
          </div>
        </div>
      </div>
      <div class="px-4 py-2 justify-center text-base md:gap-6 m-auto">
        <div
class="flex flex-1 text-base mx-auto gap-3 md:px-5 lg:px-1 xl:px-5 md:max-w-3xl lg:max-w-[40rem] xl:max-w-[48rem] group final-completion">
          <div class="flex-shrink-0 flex flex-col relative items-end">
            <div>
              <div class="pt-0.5">
                <div
class="gizmo-shadow-stroke flex h-6 w-6 items-center justify-center overflow-hidden rounded-full">
                  <div
style="background-color: rgb(25, 195, 125); width: 24px; height: 24px;"
class="relative p-1 rounded-sm h-9 w-9 text-white flex items-center justify-center"><font
                      color="#a51d2d"><svg width="41" height="41"
                        viewBox="0 0 41 41" fill="none"
                        xmlns="http://www.w3.org/2000/svg"
                        class="icon-sm"><text x="-9999" y="-9999">ChatGPT</text></svg></font></div>
                </div>
              </div>
            </div>
          </div>
        </div>
      </div>
      <div class="flex flex-grow flex-col max-w-full">
        <div data-message-author-role="assistant"
          data-message-id="7ade6cf4-25e0-4d90-bfce-93eb68faa313"
class="min-h-[20px] text-message flex flex-col items-start gap-3 whitespace-pre-wrap break-words [.text-message+&]:mt-5 overflow-x-auto">
          <div
class="markdown prose w-full break-words dark:prose-invert dark">
            <p><font color="#a51d2d">ChatGPT: </font></p>
            <p><font color="#a51d2d">While p-adic numbers have some
                unusual properties compared to real numbers, and their
                arithmetic is different, there are no inherent paradoxes
                with addition and multiplication within the context of
                the p-adic number system itself. The p-adic numbers form
                a field, and they obey the usual algebraic properties
                like associativity, commutativity, and distributivity.</font></p>
            <p><font color="#a51d2d">However, the p-adic numbers can be
                counterintuitive when compared to the real numbers. One
                notable difference is that the p-adic norm (a measure of
                size) behaves differently. In particular, the p-adic
                norm satisfies the ultrametric inequality:</font></p>
            <p><font color="#a51d2d"><span class="math math-inline"><span
                    class="katex"><span class="katex-mathml"><math
                        xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi
                              mathvariant="normal">∣</mi><mi>x</mi><mo>+</mo><mi>y</mi><msub><mi
                                mathvariant="normal">∣</mi><mi>p</mi></msub><mo>≤</mo><mi>max</mi><mo>⁡</mo><mo
                              stretchy="false">(</mo><mi
                              mathvariant="normal">∣</mi><mi>x</mi><msub><mi
                                mathvariant="normal">∣</mi><mi>p</mi></msub><mo
                              separator="true">,</mo><mi
                              mathvariant="normal">∣</mi><mi>y</mi><msub><mi
                                mathvariant="normal">∣</mi><mi>p</mi></msub><mo
                              stretchy="false">)</mo></mrow></semantics></math></span><span
                      class="katex-html" aria-hidden="true"><span
                        class="base"><span class="strut"
                          style="height: 1em; vertical-align: -0.25em;"></span><span
                          class="mord">∣</span><span
                          class="mord mathnormal">x</span><span
                          class="mspace" style="margin-right: 0.2222em;"></span><span
                          class="mbin">+</span><span class="mspace"
                          style="margin-right: 0.2222em;"></span></span><span
                        class="base"><span class="strut"
style="height: 1.0361em; vertical-align: -0.2861em;"></span><span
                          class="mord mathnormal"
                          style="margin-right: 0.03588em;">y</span><span
                          class="mord"><span class="mord">∣</span><span
                            class="msupsub"><span
                              class="vlist-t vlist-t2"><span
                                class="vlist-r"><span class="vlist"
                                  style="height: 0.1514em;"><span
style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span
                                      class="pstrut"
                                      style="height: 2.7em;"></span><span
class="sizing reset-size6 size3 mtight"><span
                                        class="mord mathnormal mtight">p</span></span></span></span><span
                                  class="vlist-s">​</span></span><span
                                class="vlist-r"><span class="vlist"
                                  style="height: 0.2861em;"><span></span></span></span></span></span></span><span
                          class="mspace" style="margin-right: 0.2778em;"></span><span
                          class="mrel">≤</span><span class="mspace"
                          style="margin-right: 0.2778em;"></span></span><span
                        class="base"><span class="strut"
style="height: 1.0361em; vertical-align: -0.2861em;"></span><span
                          class="mop">max</span><span class="mopen">(</span><span
                          class="mord">∣</span><span
                          class="mord mathnormal">x</span><span
                          class="mord"><span class="mord">∣</span><span
                            class="msupsub"><span
                              class="vlist-t vlist-t2"><span
                                class="vlist-r"><span class="vlist"
                                  style="height: 0.1514em;"><span
style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span
                                      class="pstrut"
                                      style="height: 2.7em;"></span><span
class="sizing reset-size6 size3 mtight"><span
                                        class="mord mathnormal mtight">p</span></span></span></span><span
                                  class="vlist-s">​</span></span><span
                                class="vlist-r"><span class="vlist"
                                  style="height: 0.2861em;"><span></span></span></span></span></span></span><span
                          class="mpunct">,</span><span class="mspace"
                          style="margin-right: 0.1667em;"></span><span
                          class="mord">∣</span><span
                          class="mord mathnormal"
                          style="margin-right: 0.03588em;">y</span><span
                          class="mord"><span class="mord">∣</span><span
                            class="msupsub"><span
                              class="vlist-t vlist-t2"><span
                                class="vlist-r"><span class="vlist"
                                  style="height: 0.1514em;"><span
style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span
                                      class="pstrut"
                                      style="height: 2.7em;"></span><span
class="sizing reset-size6 size3 mtight"><span
                                        class="mord mathnormal mtight">p</span></span></span></span><span
                                  class="vlist-s">​</span></span><span
                                class="vlist-r"><span class="vlist"
                                  style="height: 0.2861em;"><span></span></span></span></span></span></span><span
                          class="mclose">)</span></span></span></span></span></font></p>
            <p><font color="#a51d2d">This means that in the p-adic
                numbers, the distance between two numbers is determined
                more by the larger of the two numbers rather than the
                sum of their absolute values.</font></p>
            <p><font color="#a51d2d">These differences can lead to
                interesting and sometimes unexpected results. For
                example, some sequences of rational numbers that
                converge in the real numbers may diverge in the p-adic
                numbers, and vice versa.</font></p>
            <p><font color="#a51d2d">While these differences might seem
                paradoxical at first, they arise from the unique
                structure of the p-adic numbers and do not violate the
                fundamental properties of the p-adic arithmetic. They
                are simply a reflection of the fact that the p-adic
                numbers are a different completion of the rational
                numbers compared to the real numbers.</font></p>
          </div>
        </div>
      </div>
    </blockquote>
    <div class="flex-shrink-0 flex flex-col relative items-end">
      <div>
        <div class="pt-0.5">
          <div
class="gizmo-shadow-stroke flex h-6 w-6 items-center justify-center overflow-hidden rounded-full">
            <div class="relative flex"><font color="#a51d2d"><br>
              </font></div>
          </div>
        </div>
      </div>
    </div>
    <blockquote>
      <div class="flex flex-grow flex-col max-w-full">
        <div data-message-author-role="user"
          data-message-id="aaa26a02-df25-43dc-8740-d90afd82f4ed"
class="min-h-[20px] text-message flex flex-col items-start gap-3 whitespace-pre-wrap break-words [.text-message+&]:mt-5 overflow-x-auto">
          <div class=""><font color="#a51d2d">RO: </font></div>
          <div class=""><font color="#a51d2d">what are the problems of
              the decimal notation and algebraic properties such as
              associativity, commutativity, and distributivity givem
              some axioms</font></div>
        </div>
      </div>
    </blockquote>
    <blockquote>
      <div class="flex flex-grow flex-col max-w-full">
        <div data-message-author-role="assistant"
          data-message-id="29451557-1027-42c9-8578-f4d412b0d52a"
class="min-h-[20px] text-message flex flex-col items-start gap-3 whitespace-pre-wrap break-words [.text-message+&]:mt-5 overflow-x-auto">
          <div
class="markdown prose w-full break-words dark:prose-invert dark">
            <p><font color="#a51d2d">ChatGPT: </font></p>
            <p><font color="#a51d2d">The decimal notation and the
                algebraic properties you mentioned—associativity,
                commutativity, and distributivity—are foundational
                concepts in number systems. However, the decimal
                notation and these algebraic properties do not come
                without their own challenges or limitations. Here are
                some considerations:</font></p>
            <ol>
              <li>
                <p><font color="#a51d2d"><strong>Repeating Decimals:</strong></font></p>
                <ul>
                  <li><font color="#a51d2d">The representation of
                      certain fractions in decimal notation results in
                      repeating or non-terminating decimals. While these
                      representations are accurate, they can make
                      arithmetic operations less straightforward.</font></li>
                </ul>
              </li>
              <li>
                <p><font color="#a51d2d"><strong>Real Numbers vs.
                      Computable Numbers:</strong></font></p>
                <ul>
                  <li><font color="#a51d2d">Not all real numbers can be
                      represented precisely in decimal notation,
                      particularly irrational numbers like π or the
                      square root of 2. This limitation can lead to
                      rounding errors in computations.</font></li>
                </ul>
              </li>
              <li>
                <p><font color="#a51d2d"><strong>Finite Precision:</strong></font></p>
                <ul>
                  <li><font color="#a51d2d">In practical applications,
                      computers have finite precision. Representing real
                      numbers with infinite precision in a finite amount
                      of memory can lead to rounding and approximation
                      errors.</font></li>
                </ul>
              </li>
              <li>
                <p><font color="#a51d2d"><strong>Associativity,
                      Commutativity, and Distributivity:</strong></font></p>
                <ul>
                  <li><font color="#a51d2d">While these properties hold
                      for most familiar number systems, there are
                      mathematical structures where they may not. For
                      example, non-commutative algebraic structures like
                      matrices or non-associative structures can violate
                      these properties.</font></li>
                </ul>
              </li>
              <li>
                <p><font color="#a51d2d"><strong>Field Axioms:</strong></font></p>
                <ul>
                  <li><font color="#a51d2d">The properties of
                      associativity, commutativity, and distributivity
                      are part of the field axioms that define the
                      structure of fields. However, not all algebraic
                      systems satisfy these axioms. For instance, the
                      integers under subtraction do not form a field
                      because subtraction is not commutative.</font></li>
                </ul>
              </li>
              <li>
                <p><font color="#a51d2d"><strong>Division by Zero:</strong></font></p>
                <ul>
                  <li><font color="#a51d2d">Division by zero is
                      undefined in many number systems, including the
                      real numbers. It can lead to inconsistencies and
                      undefined results in algebraic expressions.</font></li>
                </ul>
              </li>
              <li>
                <p><font color="#a51d2d"><strong>Imaginary and Complex
                      Numbers:</strong></font></p>
                <ul>
                  <li><font color="#a51d2d">The extension of real
                      numbers to complex numbers involves the
                      introduction of the imaginary unit 'i' and the
                      consideration of complex conjugates. This
                      departure from real numbers might seem unintuitive
                      at first.</font></li>
                </ul>
              </li>
            </ol>
            <p><font color="#a51d2d">In summary, while the decimal
                notation and standard algebraic properties are
                foundational and widely applicable, they do have
                limitations and may not fully capture the complexities
                of all mathematical structures. Mathematicians explore
                various number systems and algebraic structures to
                address specific needs and to study mathematical
                phenomena more deeply.</font></p>
          </div>
        </div>
      </div>
    </blockquote>
    <blockquote>
      <div class="flex flex-grow flex-col max-w-full">
        <div data-message-author-role="assistant"
          data-message-id="08cad0eb-cc03-40b8-ac4d-78b9ea14adf0"
class="min-h-[20px] text-message flex flex-col items-start gap-3 whitespace-pre-wrap break-words [.text-message+&]:mt-5 overflow-x-auto">
          <div
class="markdown prose w-full break-words dark:prose-invert dark">
            <p>Associativity, commutativity, and distributivity are
              fundamental properties that govern operations in algebraic
              structures, such as sets equipped with binary operations.
              These properties are crucial in defining and understanding
              mathematical structures, including groups, rings, and
              fields.</p>
            <ol>
              <li>
                <p><strong>Associativity:</strong></p>
                <ul>
                  <li>
                    <p><strong>Definition:</strong> An operation is
                      associative if the grouping of elements does not
                      affect the result of the operation.</p>
                  </li>
                  <li>
                    <p><strong>In symbols:</strong> For an operation <span
                        class="math math-inline"><span class="katex"><span
                            class="katex-mathml"><math
                              xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>∗</mo></mrow></semantics></math></span><span
                            class="katex-html" aria-hidden="true"><span
                              class="base"><span class="strut"
                                style="height: 0.4653em;"></span><span
                                class="mord">∗</span></span></span></span></span>,
                      it is associative if <span
                        class="math math-inline"><span class="katex"><span
                            class="katex-mathml"><math
                              xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo
                                    stretchy="false">(</mo><mi>a</mi><mo>∗</mo><mi>b</mi><mo
                                    stretchy="false">)</mo><mo>∗</mo><mi>c</mi><mo>=</mo><mi>a</mi><mo>∗</mo><mo
                                    stretchy="false">(</mo><mi>b</mi><mo>∗</mo><mi>c</mi><mo
                                    stretchy="false">)</mo></mrow></semantics></math></span><span
                            class="katex-html" aria-hidden="true"><span
                              class="base"><span class="strut"
style="height: 1em; vertical-align: -0.25em;"></span><span class="mopen">(</span><span
                                class="mord mathnormal">a</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span><span
                                class="mbin">∗</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span></span><span
                              class="base"><span class="strut"
style="height: 1em; vertical-align: -0.25em;"></span><span
                                class="mord mathnormal">b</span><span
                                class="mclose">)</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span><span
                                class="mbin">∗</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span></span><span
                              class="base"><span class="strut"
                                style="height: 0.4306em;"></span><span
                                class="mord mathnormal">c</span><span
                                class="mspace"
                                style="margin-right: 0.2778em;"></span><span
                                class="mrel">=</span><span
                                class="mspace"
                                style="margin-right: 0.2778em;"></span></span><span
                              class="base"><span class="strut"
                                style="height: 0.4653em;"></span><span
                                class="mord mathnormal">a</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span><span
                                class="mbin">∗</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span></span><span
                              class="base"><span class="strut"
style="height: 1em; vertical-align: -0.25em;"></span><span class="mopen">(</span><span
                                class="mord mathnormal">b</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span><span
                                class="mbin">∗</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span></span><span
                              class="base"><span class="strut"
style="height: 1em; vertical-align: -0.25em;"></span><span
                                class="mord mathnormal">c</span><span
                                class="mclose">)</span></span></span></span></span>
                      holds for all elements <span
                        class="math math-inline"><span class="katex"><span
                            class="katex-mathml"><math
                              xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow></semantics></math></span><span
                            class="katex-html" aria-hidden="true"><span
                              class="base"><span class="strut"
                                style="height: 0.4306em;"></span><span
                                class="mord mathnormal">a</span></span></span></span></span>,
                      <span class="math math-inline"><span class="katex"><span
                            class="katex-mathml"><math
                              xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow></semantics></math></span><span
                            class="katex-html" aria-hidden="true"><span
                              class="base"><span class="strut"
                                style="height: 0.6944em;"></span><span
                                class="mord mathnormal">b</span></span></span></span></span>,
                      and <span class="math math-inline"><span
                          class="katex"><span class="katex-mathml"><math
                              xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi></mrow></semantics></math></span><span
                            class="katex-html" aria-hidden="true"><span
                              class="base"><span class="strut"
                                style="height: 0.4306em;"></span><span
                                class="mord mathnormal">c</span></span></span></span></span>
                      in the set.</p>
                  </li>
                  <li>
                    <p><strong>Example:</strong> Addition and
                      multiplication of real numbers are associative:</p>
                    <ul>
                      <li><span class="math math-inline"><span
                            class="katex"><span class="katex-mathml"><math
xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo
                                      stretchy="false">(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo
                                      stretchy="false">)</mo><mo>+</mo><mi>c</mi><mo>=</mo><mi>a</mi><mo>+</mo><mo
                                      stretchy="false">(</mo><mi>b</mi><mo>+</mo><mi>c</mi><mo
                                      stretchy="false">)</mo></mrow></semantics></math></span><span
                              class="katex-html" aria-hidden="true"><span
                                class="base"><span class="strut"
style="height: 1em; vertical-align: -0.25em;"></span><span class="mopen"><br>
                                   (</span><span class="mord mathnormal">a</span><span
                                  class="mspace"
                                  style="margin-right: 0.2222em;"></span><span
                                  class="mbin">+</span><span
                                  class="mspace"
                                  style="margin-right: 0.2222em;"></span></span><span
                                class="base"><span class="strut"
style="height: 1em; vertical-align: -0.25em;"></span><span
                                  class="mord mathnormal">b</span><span
                                  class="mclose">)</span><span
                                  class="mspace"
                                  style="margin-right: 0.2222em;"></span><span
                                  class="mbin">+</span><span
                                  class="mspace"
                                  style="margin-right: 0.2222em;"></span></span><span
                                class="base"><span class="strut"
                                  style="height: 0.4306em;"></span><span
                                  class="mord mathnormal">c</span><span
                                  class="mspace"
                                  style="margin-right: 0.2778em;"></span><span
                                  class="mrel">=</span><span
                                  class="mspace"
                                  style="margin-right: 0.2778em;"></span></span><span
                                class="base"><span class="strut"
style="height: 0.6667em; vertical-align: -0.0833em;"></span><span
                                  class="mord mathnormal">a</span><span
                                  class="mspace"
                                  style="margin-right: 0.2222em;"></span><span
                                  class="mbin">+</span><span
                                  class="mspace"
                                  style="margin-right: 0.2222em;"></span></span><span
                                class="base"><span class="strut"
style="height: 1em; vertical-align: -0.25em;"></span><span class="mopen">(</span><span
                                  class="mord mathnormal">b</span><span
                                  class="mspace"
                                  style="margin-right: 0.2222em;"></span><span
                                  class="mbin">+</span><span
                                  class="mspace"
                                  style="margin-right: 0.2222em;"></span></span><span
                                class="base"><span class="strut"
style="height: 1em; vertical-align: -0.25em;"></span><span
                                  class="mord mathnormal">c</span><span
                                  class="mclose">)</span></span></span></span></span>
                        for addition.</li>
                      <li><span class="math math-inline"><span
                            class="katex"><span class="katex-mathml"><math
xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo
                                      stretchy="false">(</mo><mi>a</mi><mo>⋅</mo><mi>b</mi><mo
                                      stretchy="false">)</mo><mo>⋅</mo><mi>c</mi><mo>=</mo><mi>a</mi><mo>⋅</mo><mo
                                      stretchy="false">(</mo><mi>b</mi><mo>⋅</mo><mi>c</mi><mo
                                      stretchy="false">)</mo></mrow></semantics></math></span><span
                              class="katex-html" aria-hidden="true"><span
                                class="base"><span class="strut"
style="height: 1em; vertical-align: -0.25em;"></span><span class="mopen"><br>
                                  (</span><span class="mord mathnormal">a</span><span
                                  class="mspace"
                                  style="margin-right: 0.2222em;"></span><span
                                  class="mbin">⋅</span><span
                                  class="mspace"
                                  style="margin-right: 0.2222em;"></span></span><span
                                class="base"><span class="strut"
style="height: 1em; vertical-align: -0.25em;"></span><span
                                  class="mord mathnormal">b</span><span
                                  class="mclose">)</span><span
                                  class="mspace"
                                  style="margin-right: 0.2222em;"></span><span
                                  class="mbin">⋅</span><span
                                  class="mspace"
                                  style="margin-right: 0.2222em;"></span></span><span
                                class="base"><span class="strut"
                                  style="height: 0.4306em;"></span><span
                                  class="mord mathnormal">c</span><span
                                  class="mspace"
                                  style="margin-right: 0.2778em;"></span><span
                                  class="mrel">=</span><span
                                  class="mspace"
                                  style="margin-right: 0.2778em;"></span></span><span
                                class="base"><span class="strut"
                                  style="height: 0.4445em;"></span><span
                                  class="mord mathnormal">a</span><span
                                  class="mspace"
                                  style="margin-right: 0.2222em;"></span><span
                                  class="mbin">⋅</span><span
                                  class="mspace"
                                  style="margin-right: 0.2222em;"></span></span><span
                                class="base"><span class="strut"
style="height: 1em; vertical-align: -0.25em;"></span><span class="mopen">(</span><span
                                  class="mord mathnormal">b</span><span
                                  class="mspace"
                                  style="margin-right: 0.2222em;"></span><span
                                  class="mbin">⋅</span><span
                                  class="mspace"
                                  style="margin-right: 0.2222em;"></span></span><span
                                class="base"><span class="strut"
style="height: 1em; vertical-align: -0.25em;"></span><span
                                  class="mord mathnormal">c</span><span
                                  class="mclose">)</span></span></span></span></span>
                        for multiplication.</li>
                    </ul>
                  </li>
                </ul>
              </li>
              <li>
                <p><strong>Commutativity:</strong></p>
                <ul>
                  <li>
                    <p><strong>Definition:</strong> An operation is
                      commutative (or abelian) if the order of elements
                      does not affect the result of the operation.</p>
                  </li>
                  <li>
                    <p><strong>In symbols:</strong> For an operation <span
                        class="math math-inline"><span class="katex"><span
                            class="katex-mathml"><math
                              xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>∗</mo></mrow></semantics></math></span><span
                            class="katex-html" aria-hidden="true"><span
                              class="base"><span class="strut"
                                style="height: 0.4653em;"></span><span
                                class="mord">∗</span></span></span></span></span>,
                      it is commutative if <span
                        class="math math-inline"><span class="katex"><span
                            class="katex-mathml"><math
                              xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∗</mo><mi>b</mi><mo>=</mo><mi>b</mi><mo>∗</mo><mi>a</mi></mrow></semantics></math></span><span
                            class="katex-html" aria-hidden="true"><span
                              class="base"><span class="strut"
                                style="height: 0.4653em;"></span><span
                                class="mord mathnormal"></span><span
                                class="mord mathnormal"><br>
                                a</span><span class="mspace"
                                style="margin-right: 0.2222em;"></span><span
                                class="mbin">∗</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span></span><span
                              class="base"><span class="strut"
                                style="height: 0.6944em;"></span><span
                                class="mord mathnormal">b</span><span
                                class="mspace"
                                style="margin-right: 0.2778em;"></span><span
                                class="mrel">=</span><span
                                class="mspace"
                                style="margin-right: 0.2778em;"></span></span><span
                              class="base"><span class="strut"
                                style="height: 0.6944em;"></span><span
                                class="mord mathnormal">b</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span><span
                                class="mbin">∗</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span></span><span
                              class="base"><span class="strut"
                                style="height: 0.4306em;"></span><span
                                class="mord mathnormal">a</span></span></span></span></span>
                      holds for all elements <span
                        class="math math-inline"><span class="katex"><span
                            class="katex-mathml"><math
                              xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow></semantics></math></span><span
                            class="katex-html" aria-hidden="true"><span
                              class="base"><span class="strut"
                                style="height: 0.4306em;"></span><span
                                class="mord mathnormal">a</span></span></span></span></span>
                      and <span class="math math-inline"><span
                          class="katex"><span class="katex-mathml"><math
                              xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow></semantics></math></span><span
                            class="katex-html" aria-hidden="true"><span
                              class="base"><span class="strut"
                                style="height: 0.6944em;"></span><span
                                class="mord mathnormal">b</span></span></span></span></span>
                      in the set.</p>
                  </li>
                  <li>
                    <p><strong>Example:</strong> Addition is commutative
                      for real numbers (<span class="math math-inline"><span
                          class="katex"><span class="katex-mathml"><math
                              xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>+</mo><mi>b</mi><mo>=</mo><mi>b</mi><mo>+</mo><mi>a</mi></mrow></semantics></math></span><span
                            class="katex-html" aria-hidden="true"><span
                              class="base"><span class="strut"
style="height: 0.6667em; vertical-align: -0.0833em;"></span><span
                                class="mord mathnormal"><br>
                                                                       
                                                                       
                                                    a</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span><span
                                class="mbin">+</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span></span><span
                              class="base"><span class="strut"
                                style="height: 0.6944em;"></span><span
                                class="mord mathnormal">b</span><span
                                class="mspace"
                                style="margin-right: 0.2778em;"></span><span
                                class="mrel">=</span><span
                                class="mspace"
                                style="margin-right: 0.2778em;"></span></span><span
                              class="base"><span class="strut"
style="height: 0.7778em; vertical-align: -0.0833em;"></span><span
                                class="mord mathnormal">b</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span><span
                                class="mbin">+</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span></span><span
                              class="base"><span class="strut"
                                style="height: 0.4306em;"></span><span
                                class="mord mathnormal">a</span></span></span></span></span>),
                      <br>
                      but multiplication is not (<span
                        class="math math-inline"><span class="katex"><span
                            class="katex-mathml"><math
                              xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>⋅</mo><mi>b</mi><mo
                                    mathvariant="normal">≠</mo><mi>b</mi><mo>⋅</mo><mi>a</mi></mrow></semantics></math></span><span
                            class="katex-html" aria-hidden="true"><span
                              class="base"><span class="strut"
                                style="height: 0.4445em;"></span><span
                                class="mord mathnormal"><br>
                                               a</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span><span
                                class="mbin">⋅</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span></span><span
                              class="base"><span class="strut"
style="height: 0.8889em; vertical-align: -0.1944em;"></span><span
                                class="mord mathnormal">b</span><span
                                class="mspace"
                                style="margin-right: 0.2778em;"></span><span
                                class="mrel"><span class="mrel"><span
                                    class="mord vbox"><span
                                      class="thinbox"><span class="rlap"><span
                                          class="strut"
style="height: 0.8889em; vertical-align: -0.1944em;"></span><span
                                          class="inner"><span
                                            class="mord"><span
                                              class="mrel"></span></span></span><span
                                          class="fix"></span></span></span></span></span><span
                                  class="mrel">=</span></span><span
                                class="mspace"
                                style="margin-right: 0.2778em;"></span></span><span
                              class="base"><span class="strut"
                                style="height: 0.6944em;"></span><span
                                class="mord mathnormal">b</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span><span
                                class="mbin">⋅</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span></span><span
                              class="base"><span class="strut"
                                style="height: 0.4306em;"></span><span
                                class="mord mathnormal">a</span></span></span></span></span>
                      in general).</p>
                  </li>
                </ul>
              </li>
              <li>
                <p><strong>Distributivity:</strong></p>
                <ul>
                  <li>
                    <p><strong>Definition:</strong> Distributivity
                      relates two operations (usually addition and
                      multiplication) and describes how one operation
                      interacts with the other.</p>
                  </li>
                  <li>
                    <p><strong>In symbols:</strong> For operations <span
                        class="math math-inline"><span class="katex"><span
                            class="katex-mathml"><math
                              xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>∗</mo></mrow></semantics></math></span><span
                            class="katex-html" aria-hidden="true"><span
                              class="base"><span class="strut"
                                style="height: 0.4653em;"></span><span
                                class="mord">∗</span></span></span></span></span>
                      and <span class="math math-inline"><span
                          class="katex"><span class="katex-mathml"><math
                              xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>∘</mo></mrow></semantics></math></span><span
                            class="katex-html" aria-hidden="true"><span
                              class="base"><span class="strut"
                                style="height: 0.4445em;"></span><span
                                class="mord">∘</span></span></span></span></span>,
                      distributivity implies that <span
                        class="math math-inline"><span class="katex"><span
                            class="katex-mathml"><math
                              xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi><br>
                                    <br>
                                    <br>
                                    a</mi><mo>∗</mo><mo stretchy="false">(</mo><mi>b</mi><mo>∘</mo><mi>c</mi><mo
                                    stretchy="false">)</mo><mo>=</mo><mo
                                    stretchy="false">(</mo><mi>a</mi><mo>∗</mo><mi>b</mi><mo
                                    stretchy="false">)</mo><mo>∘</mo><mo
                                    stretchy="false">(</mo><mi>a</mi><mo>∗</mo><mi>c</mi><mo
                                    stretchy="false">)</mo></mrow></semantics></math></span><span
                            class="katex-html" aria-hidden="true"><span
                              class="base"><span class="strut"
                                style="height: 0.4653em;"></span><span
                                class="mord mathnormal"><br>
                                a</span><span class="mspace"
                                style="margin-right: 0.2222em;"></span><span
                                class="mbin">∗</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span></span><span
                              class="base"><span class="strut"
style="height: 1em; vertical-align: -0.25em;"></span><span class="mopen">(</span><span
                                class="mord mathnormal">b</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span><span
                                class="mbin">∘</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span></span><span
                              class="base"><span class="strut"
style="height: 1em; vertical-align: -0.25em;"></span><span
                                class="mord mathnormal">c</span><span
                                class="mclose">)</span><span
                                class="mspace"
                                style="margin-right: 0.2778em;"></span><span
                                class="mrel">=</span><span
                                class="mspace"
                                style="margin-right: 0.2778em;"></span></span><span
                              class="base"><span class="strut"
style="height: 1em; vertical-align: -0.25em;"></span><span class="mopen">(</span><span
                                class="mord mathnormal">a</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span><span
                                class="mbin">∗</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span></span><span
                              class="base"><span class="strut"
style="height: 1em; vertical-align: -0.25em;"></span><span
                                class="mord mathnormal">b</span><span
                                class="mclose">)</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span><span
                                class="mbin">∘</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span></span><span
                              class="base"><span class="strut"
style="height: 1em; vertical-align: -0.25em;"></span><span class="mopen">(</span><span
                                class="mord mathnormal">a</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span><span
                                class="mbin">∗</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span></span><span
                              class="base"><span class="strut"
style="height: 1em; vertical-align: -0.25em;"></span><span
                                class="mord mathnormal">c</span><span
                                class="mclose">)</span></span></span></span></span>.</p>
                  </li>
                  <li>
                    <p><strong>Example:</strong> Distributivity holds
                      for multiplication over addition in real numbers:
                      <span class="math math-inline"><span class="katex"><span
                            class="katex-mathml"><math
                              xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>⋅</mo><mo
                                    stretchy="false">(</mo><mi>b</mi><mo>+</mo><mi>c</mi><mo
                                    stretchy="false">)</mo><mo>=</mo><mi>a</mi><mo>⋅</mo><mi>b</mi><mo>+</mo><mi>a</mi><mo>⋅</mo><mi>c</mi></mrow></semantics></math></span><span
                            class="katex-html" aria-hidden="true"><span
                              class="base"><span class="strut"
                                style="height: 0.4445em;"></span><span
                                class="mord mathnormal"><br>
                                a</span><span class="mspace"
                                style="margin-right: 0.2222em;"></span><span
                                class="mbin">⋅</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span></span><span
                              class="base"><span class="strut"
style="height: 1em; vertical-align: -0.25em;"></span><span class="mopen">(</span><span
                                class="mord mathnormal">b</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span><span
                                class="mbin">+</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span></span><span
                              class="base"><span class="strut"
style="height: 1em; vertical-align: -0.25em;"></span><span
                                class="mord mathnormal">c</span><span
                                class="mclose">)</span><span
                                class="mspace"
                                style="margin-right: 0.2778em;"></span><span
                                class="mrel">=</span><span
                                class="mspace"
                                style="margin-right: 0.2778em;"></span></span><span
                              class="base"><span class="strut"
                                style="height: 0.4445em;"></span><span
                                class="mord mathnormal">a</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span><span
                                class="mbin">⋅</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span></span><span
                              class="base"><span class="strut"
style="height: 0.7778em; vertical-align: -0.0833em;"></span><span
                                class="mord mathnormal">b</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span><span
                                class="mbin">+</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span></span><span
                              class="base"><span class="strut"
                                style="height: 0.4445em;"></span><span
                                class="mord mathnormal">a</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span><span
                                class="mbin">⋅</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span></span><span
                              class="base"><span class="strut"
                                style="height: 0.4306em;"></span><span
                                class="mord mathnormal">c</span></span></span></span></span>.</p>
                  </li>
                </ul>
              </li>
            </ol>
            <p>These properties play a crucial role in algebraic
              structures. For instance:</p>
            <ul>
              <li>A group is a set equipped with an associative
                operation and an identity element.</li>
              <li>A ring is a set equipped with two operations (usually
                addition and multiplication) that satisfy associativity,
                distributivity, and the existence of an additive
                identity.</li>
              <li>A field is a ring in which multiplication is also
                commutative, and every nonzero element has a
                multiplicative inverse.</li>
            </ul>
            <p>Understanding these properties is essential for working
              with algebraic structures and ensuring the consistency of
              mathematical operations.</p>
            <p><br>
            </p>
            <div class="flex flex-grow flex-col max-w-full">
              <div data-message-author-role="assistant"
                data-message-id="a5bf21ba-6101-425d-800c-5631aa0b3947"
class="min-h-[20px] text-message flex flex-col items-start gap-3 whitespace-pre-wrap break-words [.text-message+&]:mt-5 overflow-x-auto">
                <div
class="markdown prose w-full break-words dark:prose-invert dark">
                  <p>Subtraction is not commutative, meaning that the
                    order of the numbers matters. In general, <span
                      class="math math-inline"><span class="katex"><span
                          class="katex-mathml"><math
                            xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>−</mo><mi>b</mi></mrow></semantics></math></span><span
                          class="katex-html" aria-hidden="true"><span
                            class="base"><span class="strut"
style="height: 0.6667em; vertical-align: -0.0833em;"></span><span
                              class="mord mathnormal">a</span><span
                              class="mspace"
                              style="margin-right: 0.2222em;"></span><span
                              class="mbin">−</span><span class="mspace"
                              style="margin-right: 0.2222em;"></span></span><span
                            class="base"><span class="strut"
                              style="height: 0.6944em;"></span><span
                              class="mord mathnormal">b</span></span></span></span></span>
                    is not equal to <span class="math math-inline"><span
                        class="katex"><span class="katex-mathml"><math
                            xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo>−</mo><mi>a</mi></mrow></semantics></math></span><span
                          class="katex-html" aria-hidden="true"><span
                            class="base"><span class="strut"
style="height: 0.7778em; vertical-align: -0.0833em;"></span><span
                              class="mord mathnormal">b</span><span
                              class="mspace"
                              style="margin-right: 0.2222em;"></span><span
                              class="mbin">−</span><span class="mspace"
                              style="margin-right: 0.2222em;"></span></span><span
                            class="base"><span class="strut"
                              style="height: 0.4306em;"></span><span
                              class="mord mathnormal">a</span></span></span></span></span>.</p>
                  <p>The reason for this lack of commutativity in
                    subtraction lies in the definition of subtraction
                    itself. Subtraction is essentially the inverse
                    operation of addition. If you consider the
                    expression <span class="math math-inline"><span
                        class="katex"><span class="katex-mathml"><math
                            xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>−</mo><mi>b</mi></mrow></semantics></math></span><span
                          class="katex-html" aria-hidden="true"><span
                            class="base"><span class="strut"
style="height: 0.6667em; vertical-align: -0.0833em;"></span><span
                              class="mord mathnormal">a</span><span
                              class="mspace"
                              style="margin-right: 0.2222em;"></span><span
                              class="mbin">−</span><span class="mspace"
                              style="margin-right: 0.2222em;"></span></span><span
                            class="base"><span class="strut"
                              style="height: 0.6944em;"></span><span
                              class="mord mathnormal">b</span></span></span></span></span>,
                    it is equivalent to adding the additive inverse of <span
                      class="math math-inline"><span class="katex"><span
                          class="katex-mathml"><math
                            xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow></semantics></math></span><span
                          class="katex-html" aria-hidden="true"><span
                            class="base"><span class="strut"
                              style="height: 0.6944em;"></span><span
                              class="mord mathnormal">b</span></span></span></span></span>
                    to <span class="math math-inline"><span
                        class="katex"><span class="katex-mathml"><math
                            xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow></semantics></math></span><span
                          class="katex-html" aria-hidden="true"><span
                            class="base"><span class="strut"
                              style="height: 0.4306em;"></span><span
                              class="mord mathnormal">a</span></span></span></span></span>.</p>
                  <p>Mathematically, <span class="math math-inline"><span
                        class="katex"><span class="katex-mathml"><math
                            xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>−</mo><mi>b</mi></mrow></semantics></math></span><span
                          class="katex-html" aria-hidden="true"><span
                            class="base"><span class="strut"
style="height: 0.6667em; vertical-align: -0.0833em;"></span><span
                              class="mord mathnormal">a</span><span
                              class="mspace"
                              style="margin-right: 0.2222em;"></span><span
                              class="mbin">−</span><span class="mspace"
                              style="margin-right: 0.2222em;"></span></span><span
                            class="base"><span class="strut"
                              style="height: 0.6944em;"></span><span
                              class="mord mathnormal">b</span></span></span></span></span>
                    can be defined as <span class="math math-inline"><span
                        class="katex"><span class="katex-mathml"><math
                            xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>+</mo><mo
                                  stretchy="false">(</mo><mo>−</mo><mi>b</mi><mo
                                  stretchy="false">)</mo></mrow></semantics></math></span><span
                          class="katex-html" aria-hidden="true"><span
                            class="base"><span class="strut"
style="height: 0.6667em; vertical-align: -0.0833em;"></span><span
                              class="mord mathnormal">a</span><span
                              class="mspace"
                              style="margin-right: 0.2222em;"></span><span
                              class="mbin">+</span><span class="mspace"
                              style="margin-right: 0.2222em;"></span></span><span
                            class="base"><span class="strut"
style="height: 1em; vertical-align: -0.25em;"></span><span class="mopen">(</span><span
                              class="mord">−</span><span
                              class="mord mathnormal">b</span><span
                              class="mclose">)</span></span></span></span></span>,
                    where <span class="math math-inline"><span
                        class="katex"><span class="katex-mathml"><math
                            xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mi>b</mi></mrow></semantics></math></span><span
                          class="katex-html" aria-hidden="true"><span
                            class="base"><span class="strut"
style="height: 0.7778em; vertical-align: -0.0833em;"></span><span
                              class="mord">−</span><span
                              class="mord mathnormal">b</span></span></span></span></span>
                    is the additive inverse of <span
                      class="math math-inline"><span class="katex"><span
                          class="katex-mathml"><math
                            xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow></semantics></math></span><span
                          class="katex-html" aria-hidden="true"><span
                            class="base"><span class="strut"
                              style="height: 0.6944em;"></span><span
                              class="mord mathnormal">b</span></span></span></span></span>.
                    So, when you reverse the order and have <span
                      class="math math-inline"><span class="katex"><span
                          class="katex-mathml"><math
                            xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo>−</mo><mi>a</mi></mrow></semantics></math></span><span
                          class="katex-html" aria-hidden="true"><span
                            class="base"><span class="strut"
style="height: 0.7778em; vertical-align: -0.0833em;"></span><span
                              class="mord mathnormal">b</span><span
                              class="mspace"
                              style="margin-right: 0.2222em;"></span><span
                              class="mbin">−</span><span class="mspace"
                              style="margin-right: 0.2222em;"></span></span><span
                            class="base"><span class="strut"
                              style="height: 0.4306em;"></span><span
                              class="mord mathnormal">a</span></span></span></span></span>,
                    it is equivalent to <span class="math math-inline"><span
                        class="katex"><span class="katex-mathml"><math
                            xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo>+</mo><mo
                                  stretchy="false">(</mo><mo>−</mo><mi>a</mi><mo
                                  stretchy="false">)</mo></mrow></semantics></math></span><span
                          class="katex-html" aria-hidden="true"><span
                            class="base"><span class="strut"
style="height: 0.7778em; vertical-align: -0.0833em;"></span><span
                              class="mord mathnormal">b</span><span
                              class="mspace"
                              style="margin-right: 0.2222em;"></span><span
                              class="mbin">+</span><span class="mspace"
                              style="margin-right: 0.2222em;"></span></span><span
                            class="base"><span class="strut"
style="height: 1em; vertical-align: -0.25em;"></span><span class="mopen">(</span><span
                              class="mord">−</span><span
                              class="mord mathnormal">a</span><span
                              class="mclose">)</span></span></span></span></span>.</p>
                  <p>In general, <span class="math math-inline"><span
                        class="katex"><span class="katex-mathml"><math
                            xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>+</mo><mo
                                  stretchy="false">(</mo><mo>−</mo><mi>b</mi><mo
                                  stretchy="false">)</mo></mrow></semantics></math></span><span
                          class="katex-html" aria-hidden="true"><span
                            class="base"><span class="strut"
style="height: 0.6667em; vertical-align: -0.0833em;"></span><span
                              class="mord mathnormal">a</span><span
                              class="mspace"
                              style="margin-right: 0.2222em;"></span><span
                              class="mbin">+</span><span class="mspace"
                              style="margin-right: 0.2222em;"></span></span><span
                            class="base"><span class="strut"
style="height: 1em; vertical-align: -0.25em;"></span><span class="mopen">(</span><span
                              class="mord">−</span><span
                              class="mord mathnormal">b</span><span
                              class="mclose">)</span></span></span></span></span>
                    is not the same as <span class="math math-inline"><span
                        class="katex"><span class="katex-mathml"><math
                            xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo>+</mo><mo
                                  stretchy="false">(</mo><mo>−</mo><mi>a</mi><mo
                                  stretchy="false">)</mo></mrow></semantics></math></span><span
                          class="katex-html" aria-hidden="true"><span
                            class="base"><span class="strut"
style="height: 0.7778em; vertical-align: -0.0833em;"></span><span
                              class="mord mathnormal">b</span><span
                              class="mspace"
                              style="margin-right: 0.2222em;"></span><span
                              class="mbin">+</span><span class="mspace"
                              style="margin-right: 0.2222em;"></span></span><span
                            class="base"><span class="strut"
style="height: 1em; vertical-align: -0.25em;"></span><span class="mopen">(</span><span
                              class="mord">−</span><span
                              class="mord mathnormal">a</span><span
                              class="mclose">)</span></span></span></span></span>.
                    The additive inverses <span
                      class="math math-inline"><span class="katex"><span
                          class="katex-mathml"><math
                            xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mi>b</mi></mrow></semantics></math></span><span
                          class="katex-html" aria-hidden="true"><span
                            class="base"><span class="strut"
style="height: 0.7778em; vertical-align: -0.0833em;"></span><span
                              class="mord">−</span><span
                              class="mord mathnormal">b</span></span></span></span></span>
                    and <span class="math math-inline"><span
                        class="katex"><span class="katex-mathml"><math
                            xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mi>a</mi></mrow></semantics></math></span><span
                          class="katex-html" aria-hidden="true"><span
                            class="base"><span class="strut"
style="height: 0.6667em; vertical-align: -0.0833em;"></span><span
                              class="mord">−</span><span
                              class="mord mathnormal">a</span></span></span></span></span>
                    might not be the same, unless <span
                      class="math math-inline"><span class="katex"><span
                          class="katex-mathml"><math
                            xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>=</mo><mi>b</mi></mrow></semantics></math></span><span
                          class="katex-html" aria-hidden="true"><span
                            class="base"><span class="strut"
                              style="height: 0.4306em;"></span><span
                              class="mord mathnormal">a</span><span
                              class="mspace"
                              style="margin-right: 0.2778em;"></span><span
                              class="mrel">=</span><span class="mspace"
                              style="margin-right: 0.2778em;"></span></span><span
                            class="base"><span class="strut"
                              style="height: 0.6944em;"></span><span
                              class="mord mathnormal">b</span></span></span></span></span>.
                    Therefore, subtraction is not commutative except
                    when the two numbers are equal.</p>
                  <p>For example:</p>
                  <ul>
                    <li><span class="math math-inline"><span
                          class="katex"><span class="katex-mathml"><math
                              xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><mo>−</mo><mn>2</mn></mrow></semantics></math></span><span
                            class="katex-html" aria-hidden="true"><span
                              class="base"><span class="strut"
style="height: 0.7278em; vertical-align: -0.0833em;"></span><span
                                class="mord">3</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span><span
                                class="mbin">−</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span></span><span
                              class="base"><span class="strut"
                                style="height: 0.6444em;"></span><span
                                class="mord">2</span></span></span></span></span>
                      is not equal to <span class="math math-inline"><span
                          class="katex"><span class="katex-mathml"><math
                              xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><mo>−</mo><mn>3</mn></mrow></semantics></math></span><span
                            class="katex-html" aria-hidden="true"><span
                              class="base"><span class="strut"
style="height: 0.7278em; vertical-align: -0.0833em;"></span><span
                                class="mord">2</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span><span
                                class="mbin">−</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span></span><span
                              class="base"><span class="strut"
                                style="height: 0.6444em;"></span><span
                                class="mord">3</span></span></span></span></span>,
                      as <span class="math math-inline"><span
                          class="katex"><span class="katex-mathml"><math
                              xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>3</mn><mo>−</mo><mn>2</mn><mo>=</mo><mn>1</mn></mrow></semantics></math></span><span
                            class="katex-html" aria-hidden="true"><span
                              class="base"><span class="strut"
style="height: 0.7278em; vertical-align: -0.0833em;"></span><span
                                class="mord">3</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span><span
                                class="mbin">−</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span></span><span
                              class="base"><span class="strut"
                                style="height: 0.6444em;"></span><span
                                class="mord">2</span><span
                                class="mspace"
                                style="margin-right: 0.2778em;"></span><span
                                class="mrel">=</span><span
                                class="mspace"
                                style="margin-right: 0.2778em;"></span></span><span
                              class="base"><span class="strut"
                                style="height: 0.6444em;"></span><span
                                class="mord">1</span></span></span></span></span>
                      and <span class="math math-inline"><span
                          class="katex"><span class="katex-mathml"><math
                              xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><mo>−</mo><mn>3</mn><mo>=</mo><mo>−</mo><mn>1</mn></mrow></semantics></math></span><span
                            class="katex-html" aria-hidden="true"><span
                              class="base"><span class="strut"
style="height: 0.7278em; vertical-align: -0.0833em;"></span><span
                                class="mord">2</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span><span
                                class="mbin">−</span><span
                                class="mspace"
                                style="margin-right: 0.2222em;"></span></span><span
                              class="base"><span class="strut"
                                style="height: 0.6444em;"></span><span
                                class="mord">3</span><span
                                class="mspace"
                                style="margin-right: 0.2778em;"></span><span
                                class="mrel">=</span><span
                                class="mspace"
                                style="margin-right: 0.2778em;"></span></span><span
                              class="base"><span class="strut"
style="height: 0.7278em; vertical-align: -0.0833em;"></span><span
                                class="mord">−</span><span class="mord">1</span></span></span></span></span>.</li>
                  </ul>
                  <p>It's important to note that addition is
                    commutative, but subtraction is not.</p>
                </div>
              </div>
            </div>
            <div class="mt-1 flex justify-start gap-3 empty:hidden">
              <div
class="text-gray-400 flex self-end lg:self-center justify-center lg:justify-start mt-0 -ml-1 visible"><span
                  class="" data-state="closed"></span></div>
            </div>
            <div class="flex"><span class="" data-state="closed"><br>
              </span></div>
            <div class="flex"><span class="" data-state="closed"><br>
              </span></div>
            <p></p>
          </div>
        </div>
      </div>
    </blockquote>
    <p></p>
    <p><font color="#a51d2d">R.O.</font></p>
    <p><font color="#a51d2d">--</font></p>
    <p>ChatGPT:</p>
    <p><br>
    </p>
    <blockquote>
      <p>P-adic numbers are a type of number system that extends the
        rational numbers. They are often denoted by ℚₚ, where p is a
        prime number. The p-adic numbers were introduced by Kurt Hensel
        in 1897. The key idea is to define a metric that measures the
        size of a number in relation to its divisibility by powers of p.</p>
      <p>The p-adic numbers are equipped with a p-adic valuation, which
        measures the highest power of p that divides a given rational
        number. The p-adic norm, denoted by |x|ₚ, is defined as follows:</p>
      <ul>
        <li>If x ≠ 0, then |x|ₚ = p⁻ᵏ, where k is the highest power of p
          that divides x.</li>
        <li>If x = 0, then |0|ₚ = 0.</li>
      </ul>
      <p>Let's look at some examples of p-adic numbers and their
        arithmetic, using the 2-adic numbers (p = 2) for simplicity:</p>
      <ol>
        <li>
          <p><strong>Example of 2-adic number:</strong>
            Let's consider the sequence of rational numbers {1, 2, 4, 8,
            16, ...}. In the 2-adic numbers, these converge to a single
            2-adic number. For instance, the limit of this sequence is
            represented by the 2-adic number 1 + 2 + 4 + 8 + 16 + ... =
            -1.</p>
        </li>
        <li>
          <p><strong>Addition in 2-adic numbers:</strong>
            If you want to add two 2-adic numbers, you can perform the
            addition digit by digit. For example:</p>
          <pre><div class="dark bg-black rounded-md"><div
class="flex items-center relative text-token-text-secondary bg-token-surface-primary px-4 py-2 text-xs font-sans justify-between rounded-t-md"><span>scss</span><span
          class="" data-state="closed"></span></div></div></pre>
        </li>
      </ol>
      <ol>
        <li value="2">
          <pre><div class="dark bg-black rounded-md"><div
          class="p-4 overflow-y-auto"><code
          class="!whitespace-pre hljs language-scss"><span
          class="hljs-number">1</span> + <span class="hljs-number">2</span> + <span
          class="hljs-number">4</span> + <span class="hljs-number">8</span> + <span
          class="hljs-number">16</span> + ...    (<span
          class="hljs-number">2</span>-adic representation of -<span
          class="hljs-number">1</span>)
</code></div></div></pre>
        </li>
      </ol>
      <ul>
        <li>1 + 2 + 4 + 8 + 16 + ... (2-adic representation of -1)</li>
      </ul>
      <hr>
      <p><br>
      </p>
    </blockquote>
    <a class="moz-txt-link-freetext" href="https://en.wikipedia.org/wiki/P-adic_number">https://en.wikipedia.org/wiki/P-adic_number</a><br>
    <p></p>
  </body>
</html>