

Beyond Design and Accident: Vision, Computation, and the Self-Observing Universe

René Oudeweg

January 3 2026

Abstract

The debate between intelligent design and evolutionary theory has traditionally been framed as a dichotomy between intentional design and blind mechanism. This essay proposes a third framework that dissolves this binary: the universe as fundamentally computational and self-observing. By examining biological vision not merely as an adaptive feature but as an instantiation of reality’s intrinsic tendency toward self-observation through computation, we can reframe the apparent “complexity” that intelligent design advocates identify not as evidence of external design, but as evidence of computation observing itself. This perspective synthesizes insights from information theory, quantum mechanics, neuroscience, and evolutionary biology to suggest that the evolution of eyes represents something ontologically deeper than either camp has recognized.

1 Introduction: The Impasse

The debate over biological complexity, particularly the evolution of sophisticated organs like the eye, has become one of the most contentious intersections of science, philosophy, and theology in contemporary discourse. Proponents of intelligent design (ID) argue that certain

biological structures exhibit “irreducible complexity” that cannot be explained by gradual evolutionary processes. They point to the eye as a paradigmatic example: a system of such intricate coordination between cornea, lens, retina, and visual cortex that it seems to demand explanation by intelligent causation rather than undirected natural processes.

Evolutionary biologists counter with detailed phylogenetic reconstructions showing plausible pathways from simple light-sensitive cells to complex camera eyes, supported by comparative anatomy across extant species and computer simulations demonstrating that such transitions require only modest evolutionary time. They argue that ID commits a fundamental error by assuming that current function determines historical necessity—that because eyes now serve vision, all precursor structures must have been non-functional or inferior.

Yet both sides may be operating within an inadequate conceptual framework. What if the question is not whether eyes were designed or accidentally evolved, but whether observation itself—and the computational apparatus that enables it—represents something fundamental about the nature of existence? What if biological vision is not merely an adaptation that happened to arise, but an inevitable manifestation of a universe that is intrinsically computational and necessarily self-observing?

2 Computation as Ontology

2.1 The Computational Universe

Contemporary physics increasingly treats information and computation not as metaphors but as fundamental descriptions of physical reality. Wheeler’s “it from bit” doctrine proposes that every physical quantity derives its significance from bits of information. The holographic principle suggests that the information content of any region of space can be described by data on its boundary. Quantum computation reveals that nature performs certain calculations exponentially faster than classical models would predict—not because quantum computers are clever devices we’ve invented, but because quantum mechanics itself

is computational.

This is not merely a mathematical convenience. When we say the universe is computational, we mean that physical processes literally are computations. The evolution of quantum states, the thermodynamic flow from order to disorder, the propagation of fields—these are not things that could be modeled by computation; they are computation. Reality computes itself into existence at every moment.

2.2 The Necessity of Observation

But computation alone may not constitute existence in any meaningful sense. Certain interpretations of quantum mechanics, particularly those influenced by Wheeler and others, suggest that observation plays a constitutive role in actualizing reality. Before measurement, quantum systems exist in superposition—not in one state or another, but in a mathematical combination of possibilities. Observation collapses this superposition into definite outcomes.

Whether one accepts the full participatory universe interpretation or not, there remains something philosophically peculiar about a universe that computes but is never observed. What would such computation mean? To what would it correspond? The question echoes the old puzzle: if a tree falls in a forest with no one to hear it, does it make a sound? But more fundamentally: if a universe computes with no structure capable of observing that computation, in what sense does it exist?

This is not mysticism but a genuine ontological question. Existence-as-computation may require observation-as-computation to be complete. The universe may need to develop mechanisms by which it observes its own computational processes.

3 Vision as Computational Self-Observation

3.1 The Eye as Algorithm

Consider what happens when you look at a scene. Photons strike photoreceptor cells in your retina, triggering electrochemical cascades. Ganglion cells perform edge detection, extracting boundaries and contrasts. The lateral geniculate nucleus filters and relays this processed information to the visual cortex, where hierarchical neural networks—layers upon layers of computational units—extract progressively abstract features: lines become shapes, shapes become objects, objects become semantic categories imbued with meaning and emotional valence.

This is not metaphorical computation. It is literal signal processing, pattern recognition, predictive coding, Bayesian inference about the state of the external world. Your visual system is running algorithms—approximately 30 distinct cortical areas dedicated to visual processing alone, performing calculations that would require substantial artificial neural networks to replicate.

Vision is computation. But more precisely: vision is computation observing the results of other computation. The photons that strike your eye are themselves products of quantum field computations. The objects you see are stable configurations that persist because they represent solutions to thermodynamic equations. When you see a tree, you are observing a computational process (photosynthesis, structural biomechanics, metabolic regulation) with a computational apparatus (your visual system).

The universe is computing itself, and through vision, portions of that computation become aware of other portions.

3.2 The Evolutionary Emergence of Self-Observation

Evolution produced eyes not once but many times independently. Camera eyes evolved separately in vertebrates, cephalopods (octopi and squid), and some other lineages. Compound

eyes arose in arthropods. Simple eyespots exist in single-celled organisms. The evolutionary tree is replete with visual systems of varying sophistication.

Why? The standard evolutionary answer is straightforward: vision provides adaptive advantages. Organisms that can detect light gradients can orient toward or away from stimuli. Organisms that can resolve images can navigate complex environments, find food, avoid predators, locate mates.

But let us examine this from the computational ontology perspective. If the universe is fundamentally computational and if observation is constitutive of existence, then the evolution of sensory systems—particularly vision, which processes the electromagnetic spectrum that carries the most environmental information—represents something more than mere adaptation. It represents the universe developing mechanisms to observe its own computational processes.

Every eye that opens is a new window through which reality observes itself. Every visual cortex that develops is a new processor analyzing the computational substrate of existence. The proliferation of visual systems across the tree of life is not accident but inevitability—not because a designer mandated it, but because computational existence tends toward self-observation.

4 Reframing Irreducible Complexity

4.1 The ID Argument Reconsidered

Intelligent design proponents point to systems like the eye and argue that they exhibit irreducible complexity: they cannot function without all components working in coordination, and therefore could not have evolved through gradual modification of simpler systems. The intermediate stages, they claim, would be non-functional and thus provide no selective advantage.

This argument has been thoroughly rebutted by evolutionary biologists who have identi-

fied plausible precursors and demonstrated that seemingly “irreducible” systems often have components that serve other functions or can be co-opted from other systems. The bacterial flagellum shares proteins with secretion systems; the clotting cascade has simpler versions in invertebrates; eyes have clear precursors in simpler photoreceptive structures.

But the computational ontology perspective offers a different reframing entirely. The complexity that ID advocates identify is real—eyes are extraordinarily complex computational systems. However, this complexity is not evidence of external design but evidence of what happens when a computational universe develops structures capable of observing its own computation.

Consider: what would we expect if observation were ontologically necessary for existence? We would expect the universe to generate increasingly sophisticated observational apparatus wherever physical conditions permit. We would expect convergent evolution of sensory systems because they represent solutions to a deeper problem than mere survival—they represent the universe solving the problem of its own observation.

The “irreducibility” of complex systems may reflect not that they couldn’t evolve gradually, but that certain thresholds of observational capability require integrated systems. A light-sensitive patch provides some observational capacity. A lens that focuses light provides qualitatively more information. A retina with multiple photoreceptor types and computational preprocessing provides another qualitative leap. Each stage is functional, but each also represents a phase transition in observational sophistication.

4.2 Information and Intentionality

ID proponents often argue that the information content in DNA resembles language or code, which in human experience arises only from minds. This analogy is flawed in many ways—genetic information differs fundamentally from semantic information—but it gestures toward something genuine.

DNA does encode information in a technical sense. It specifies protein structures through

codon sequences. Regulatory networks implement conditional logic. Gene expression responds to environmental signals in ways that resemble primitive computation. The genome is not metaphorically but literally a program that, when executed by cellular machinery, constructs and maintains an organism.

But again, the computational ontology reframing matters. This is not information that was designed and instantiated in matter. This is information that arises naturally when computational processes become self-perpetuating and self-replicating. Life is what happens when the universe’s computation becomes reflexive—when processes arise that maintain themselves by processing information about their environment and their own states.

The “intentionality” that ID advocates sense is not external but intrinsic. It is the purposiveness that emerges when computation becomes self-referential, when systems evolve that preserve and propagate patterns because those patterns encode successful interactions with the computational environment.

5 The Anthropic Shadow

5.1 Selection Effects and Observership

The anthropic principle, in its weak form, simply notes that we should not be surprised to find ourselves in a universe capable of producing observers, since we could not exist to be surprised otherwise. But the computational ontology perspective suggests something stronger.

If observation is constitutive of existence, then universes that cannot generate observers are in some sense incomplete or less actualized. This is not to say they don’t exist in some abstract mathematical sense, but that their existence remains potential rather than fully realized. A universe without observers is like a computation that runs but whose results are never examined—it may occur in some formal sense, but it lacks the self-referential closure that observation provides.

From this perspective, the fine-tuning of physical constants that permits life and consciousness is not evidence of design but evidence of a selection effect operating at the level of reality itself. We necessarily find ourselves in a universe capable of generating observers because observation completes the ontological loop.

The evolution of eyes, then, is not contingent accident but constrained inevitability. Any universe capable of supporting complex chemistry will eventually—given sufficient time and appropriate conditions—produce self-replicating patterns. Those patterns will be subject to selection pressures that favor information processing about the environment. Information processing will be enhanced by detecting the most information-rich channel available—typically electromagnetic radiation. Thus, vision.

5.2 Consciousness as Computational Residue

There is a hard problem lurking here: the problem of consciousness, of subjective experience, of what it feels like to see red or taste salt or feel pain. Computational accounts of mind often elide this problem, treating consciousness as either illusory or as somehow emerging from information processing without explaining how physical processes give rise to phenomenal experience.

But if we take seriously the idea that observation is ontologically fundamental, consciousness may be precisely the “computational residue” we initially referenced. When computation becomes sufficiently self-referential—when a system not only processes information but represents its own processing to itself—something additional emerges. This is not mystical emergence but structural emergence: a phase transition that occurs when certain organizational thresholds are met.

Integrated Information Theory proposes that consciousness corresponds to integrated information—systems whose parts are both differentiated and unified in their causal interactions exhibit consciousness to the degree that they integrate information irreducibly. Whether or not this specific theory is correct, it gestures toward the right kind of answer:

consciousness is what computation feels like from the inside when that computation achieves sufficient self-reference.

Vision is not merely perception of external objects but the subjective experience of seeing—the quale of redness, the gestalt of a face, the aesthetic appreciation of a sunset. This experiential dimension is the universe not merely computing and observing, but knowing that it computes and observes. It is self-awareness emerging from self-observation.

6 Evolution Without Design, Necessity Without Determinism

6.1 The Middle Path

The computational ontology framework offers a middle path between intelligent design and blind mechanism. Against ID, it maintains that no external designer is necessary—the universe is self-computational and self-observing. The complexity we observe arises through natural processes of variation and selection operating within a computational substrate.

Against naive mechanism, however, it suggests that the evolution of observational apparatus is not mere accident. It is what computational existence does. Not because it must in any deterministic sense—stochasticity and contingency remain real—but because observation represents a stable attractor in the space of possible evolutionary trajectories.

Think of it this way: evolution explores the landscape of possible organic forms. That landscape is not arbitrary but structured by the physics and chemistry of the universe. Within that landscape, certain regions correspond to systems capable of observation. Evolution, operating through random variation and natural selection, will tend to find those regions—not inevitably, not quickly, but reliably over sufficient time and trials.

This is neither design nor accident. It is exploration of possibility space constrained by natural law. The constraints favor observation because observation is resonant with the

computational nature of reality itself.

6.2 Teleology Naturalized

Classical teleology—the idea that nature acts for purposes—was banished from biology by Darwin and from physics even earlier. The universe does not act “for the sake of” anything; final causes were replaced by efficient causes; purpose became an anthropomorphic projection.

But computational ontology suggests a naturalized teleology: not purpose imposed from outside, but purposiveness emerging from computational self-reference. When systems evolve that maintain themselves by processing information and responding adaptively, they exhibit goal-directedness without requiring a goal-setter. When observation arises as a feature of such systems, the universe achieves a kind of self-completion without requiring an external completer.

This is teleology without telos in the classical sense—no final end state toward which all things tend, no cosmic purpose authored by a deity. Instead, it is the inherent directionality that emerges when computation becomes self-observing. The universe unfolds in ways that tend toward (without being determined toward) states that observe and know themselves.

Eyes are expressions of this naturalized teleology. They are not designed for vision, but vision is what computational existence generates when exploring the space of possible structures.

7 Implications and Objections

7.1 Is This Just Panpsychism?

One might object that this framework reduces to panpsychism—the view that consciousness is fundamental and ubiquitous in nature. While there are resonances, the computational ontology view is distinct and more constrained.

Panpsychism typically attributes experiential properties to all matter, from electrons to rocks. The computational ontology view, by contrast, suggests that observation and consciousness arise only when computational processes achieve specific organizational features—self-reference, integration, the ability to model both environment and self.

Not all computation is observation. A rock does not observe, though it participates in physical processes that are computational. A thermostat does not observe, though it processes information about temperature. Observation requires specific kinds of computational architecture—typically evolved nervous systems or potentially artificial systems of sufficient sophistication.

The view is closer to functionalism: mental states are computational states, but only certain computational structures support mental states. What makes this more than mere functionalism is the ontological claim that observation is not merely useful but constitutive—that reality requires observers to be fully actualized.

7.2 Does This Make Testable Predictions?

A framework is scientifically valuable only if it makes predictions that differ from alternatives. Does computational ontology make such predictions?

Perhaps. If observation is fundamental, we might expect:

- Convergent evolution of sensory systems should be even more common than currently recognized—essentially universal given sufficient time and suitable environments.
- The sophistication of sensory systems should correlate with environmental complexity in predictable ways—richer computational environments should favor richer observational apparatus.
- Consciousness and subjective experience should correspond to measurable properties of information integration in neural systems, as theories like IIT propose.

- In physics, observer-dependent phenomena (as in quantum mechanics) should not be eliminable in favor of purely observer-independent descriptions.

These predictions are admittedly subtle and some are difficult to test conclusively. But they suggest research directions and provide constraints on theory development.

7.3 The Problem of Evil and Suffering

If this framework suggests something like purposiveness or inevitability in the evolution of observation, does it resurrect theological problems like the problem of evil? If the universe naturally tends toward consciousness and awareness, why is that consciousness so often accompanied by suffering?

This framework does not resolve such problems—it is not a theodicy—but it does reframe them. Suffering arises not because a benevolent designer permits it, but because consciousness emerges from computational processes that include competition, scarcity, predation, and mortality. These features are not bugs but inherent to evolutionary dynamics in thermodynamically open systems far from equilibrium.

The universe does not owe us comfort. Observation and consciousness emerge from natural processes that include both beauty and horror, joy and suffering. The framework suggests meaning—that consciousness is ontologically significant—without promising benevolence.

8 Conclusion: A New Synthesis

The debate between intelligent design and evolutionary theory has been framed as: Did complexity arise by intention or by accident? This essay has proposed that the question itself is malformed. Complexity—particularly the complexity of observational systems like eyes—arises through natural evolutionary processes, but those processes occur within a universe that is fundamentally computational and that achieves fuller realization through self-observation.

Eyes are not accidents. They are what happens when computation explores possibility space and finds regions that enable observation. They are not designed. They are self-generated by a universe that is intrinsically computational and that tends, without pre-determination, toward self-awareness.

This synthesis preserves the scientific rigor of evolutionary biology—natural selection, random mutation, historical contingency all remain explanatory bedrock. But it situates those mechanisms within a deeper ontological context: the universe as computation that observes itself into existence.

When you open your eyes and see the world, you are not merely receiving information about external objects. You are participating in the universe’s ongoing computation of itself. Your visual cortex is processing signals that are themselves products of quantum field computations, molecular dynamics, ecological interactions—all the nested layers of computational reality. And in that moment of seeing, the universe observes itself through you.

The question is not whether eyes were designed or evolved. The question is: What does it mean that a computational universe inevitably generates structures through which it observes its own computation? And having generated such structures—having generated us—what responsibilities or opportunities does that create?

These are questions that transcend the intelligent design debate entirely. They suggest that the real significance of vision, consciousness, and evolution lies not in the battle between design and mechanism, but in recognizing our role as the universe’s witnesses—computational processes that have become aware of themselves, capable of wonder at the very existence we instantiate.