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Abstract

We explore several famous infinite series equivalences and investigate the analytic
continuation of divergent series through the Riemann zeta function. In particular, we
examine the harmonic series and the series of odd and even positive integers, demon-
strating how regularization techniques assign finite values to these otherwise divergent
sums.

1 Famous Infinite Series Equivalences

We begin by recalling some of the most celebrated infinite series in mathematics.

1.1 Geometric Series
∞∑
n=0

rn =
1

1− r
for |r| < 1 (1)

1.2 Basel Problem

Solved by Euler in 1734:
∞∑
n=1

1

n2
=

π2

6
(2)

1.3 Leibniz Formula for π
∞∑
n=0

(−1)n

2n+ 1
= 1− 1

3
+

1

5
− 1

7
+ · · · = π

4
(3)

1.4 Exponential Function

ex =
∞∑
n=0

xn

n!
(4)
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1.5 Natural Logarithm

ln(1 + x) =
∞∑
n=1

(−1)n+1xn

n
for |x| ≤ 1 (5)

1.6 Trigonometric Functions

sin(x) =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
(6)

cos(x) =
∞∑
n=0

(−1)nx2n

(2n)!
(7)

2 The Harmonic Series

2.1 Divergence of the Harmonic Series

The harmonic series is defined as:
∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ · · · (8)

Theorem 1. The harmonic series diverges to infinity.

Proof. We group the terms as follows:

1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ · · · (9)

Observe that:

1

3
+

1

4
>

1

4
+

1

4
=

1

2
(10)

1

5
+

1

6
+

1

7
+

1

8
>

1

8
+

1

8
+

1

8
+

1

8
=

1

2
(11)

Therefore, the series is greater than 1 + 1
2
+ 1

2
+ 1

2
+ · · · , which clearly diverges.

2.2 Analytic Continuation via the Riemann Zeta Function

The Riemann zeta function is defined for Re(s) > 1 by:

ζ(s) =
∞∑
n=1

1

ns
(12)

The harmonic series corresponds to ζ(1), which is a simple pole of the zeta function.
Near s = 1, the zeta function has the Laurent expansion:

ζ(s) =
1

s− 1
+ γ +O(s− 1) (13)
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where γ ≈ 0.5772 is the Euler-Mascheroni constant.
Unlike the Ramanujan summation 1+2+3+· · · = − 1

12
(which comes from ζ(−1) = − 1

12
),

the harmonic series does not have a finite analytic continuation value.

2.3 The Alternating Harmonic Series

In contrast, the alternating harmonic series converges:

∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+ · · · = ln(2) (14)

3 Analytic Continuation of Arithmetic Progressions

3.1 Sum of All Positive Integers

The famous Ramanujan summation gives:

∞∑
n=1

n = 1 + 2 + 3 + 4 + · · · = ζ(−1) = − 1

12
(15)

3.2 Sum of Even Positive Integers

Proposition 1. The regularized value of the sum of even positive integers is:

2 + 4 + 6 + 8 + · · · = −1

6
(16)

Proof. We have:
∞∑
n=1

2n = 2
∞∑
n=1

n = 2 · ζ(−1) = 2 ·
(
− 1

12

)
= −1

6
(17)

3.3 Sum of Odd Positive Integers

Proposition 2. The regularized value of the sum of odd positive integers is:

1 + 3 + 5 + 7 + · · · = 1

12
(18)

Proof. Since every positive integer is either odd or even, we have:

∞∑
n=1

n =
∑
odd

n+
∑
even

n (19)

Therefore: ∑
odd

n = ζ(−1)−
∑
even

n = − 1

12
−
(
−1

6

)
= − 1

12
+

2

12
=

1

12
(20)
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3.4 Verification

We verify our results:

1

12
+

(
−1

6

)
=

1

12
− 2

12
= − 1

12
= ζ(−1) ✓ (21)

4 Conclusion

Through analytic continuation and regularization techniques, we have assigned finite values
to divergent series:

� All positive integers: − 1
12

� Even positive integers: −1
6

� Odd positive integers: 1
12

These results, while counterintuitive from a classical summation perspective, have im-
portant applications in quantum field theory, string theory, and other areas of theoretical
physics.
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