

Gödel Mapping, Divergent Series, and the Semiotics of Infinity

Toward a Clarified Interpretation of Theoretical
Semiophysics

René Oudeweg

December 29, 2025

Abstract

This paper analyzes and reformulates the thesis implicit in *Bulletin #23: Theoretical Semiophysics – Gödel Mapping*. The document proposes a conceptual linkage between Gödel numbering, the regularized value of the divergent series $1+2+3+\dots=-121$, and the interpretive structure of physical theory. While the original text employs rhetorical and semiotic associations rather than formal derivations, its core claim can be reconstructed as a philosophical argument: **modern physics and mathematical logic both rely on formal symbolic systems whose meaningful results emerge only through non-intuitive treatments of infinity, self-reference, and abstraction**. This paper clarifies that argument, situates it within established mathematics and physics, and evaluates its philosophical coherence.

1. Introduction

The document under examination juxtaposes three elements:

1. **Gödel numbering**, as a method of encoding symbols and logical statements into arithmetic.
2. **The regularized sum of the natural numbers**, yielding the value -121 .
3. **The physical relevance of such constructions**, particularly in quantum field theory and string theory.

The text does not aim to prove new mathematical results. Instead, it gestures toward a broader interpretive framework—termed *Theoretical Semiophysics*—in which physical laws, mathematical symbols, and meaning itself are treated as interrelated sign systems.

The task of this paper is to extract the implicit thesis from this presentation and express it in a form suitable for academic discussion.

2. Gödel Numbering and the Formalization of Meaning

Gödel numbering assigns unique natural numbers to symbols, expressions, and proofs within a formal system. Crucially:

- Symbols initially have **no semantic content**
- Meaning arises from **formal relations and interpretive rules**
- Arithmetic becomes capable of **self-reference**

Gödel's incompleteness theorems demonstrate that any sufficiently powerful formal system contains true statements that cannot be proven within that system. The document correctly emphasizes a key philosophical implication: **formal manipulation precedes meaning**, not the reverse

From a semiotic perspective, Gödel numbering reveals that meaning is *structurally emergent*. Symbols function as signs whose significance is not intrinsic but relational.

3. Divergent Series and the Problem of Infinity

The document then turns to the famous identity:

$$1+2+3+4+\dots = -1/12$$

In standard arithmetic, this series diverges. However, in advanced mathematics and physics, the expression is understood as shorthand for the analytic continuation of the Riemann zeta function evaluated at $s=-1$.

Important clarifications:

- This is **not** an equality in the classical sense
- It arises through **regularization techniques**
- The resulting value is **physically meaningful** in specific theoretical contexts

The document emphasizes that this result appears repeatedly in quantum theory and string theory, where infinite quantities are systematically separated into divergent and finite components, with the divergent parts discarded

4. Regularization and Physical Meaning

Modern physics frequently encounters infinite expressions when modeling physical systems. The success of regularization methods shows that:

- Physical predictions can remain accurate despite intermediate infinities
- Formal manipulations can yield empirically verifiable results
- Intuitive notions of summation and magnitude are insufficient at fundamental scales

The document's inclusion of the *New York Times* article reinforces this point: infinity is not eliminated but **reinterpreted**. The finite remainder, such as -121 , acquires operational meaning through consistency and experimental validation

5. Semiophysics: Symbols, Time, and Succession

The most speculative element of the document concerns Gödel's successor function "s" and its association with temporal succession (seconds, time measurement). While this association is **not mathematically rigorous**, it functions rhetorically to support a broader claim:

Physical quantities such as time are themselves embedded in symbolic systems structured by succession, counting, and formal rules.

From a philosophical standpoint, this suggests that **physical reality is accessed only through symbolic mediation**. Measurement, theory, and prediction depend on sign systems governed by abstract rules rather than direct intuition.

6. Reconstructed Thesis (Academic Formulation)

The central thesis of the document can be restated as follows:

Both mathematical logic and fundamental physics depend on formal symbolic systems in which meaning and empirical success arise from non-intuitive treatments of infinity and abstraction. Gödel numbering and the regularization of divergent series exemplify how internally consistent formal procedures can yield

true and physically relevant results even when classical intuition fails.

This is not a claim about numerical identity or physical causation, but about **epistemology**: how knowledge is produced within formal systems.

7. Evaluation and Critique

Strengths

- Correctly identifies the philosophical parallel between Gödel's work and modern physics
- Emphasizes the constructive role of abstraction and regularization
- Highlights the non-intuitive foundations of successful scientific theories

Limitations

- Conflates metaphorical and formal connections
- Risks misleading readers about the literal meaning of divergent sums
- Uses symbolic coincidence (e.g., “s” for successor and seconds) where formal justification is absent

The argument is strongest when interpreted **philosophically**, weakest when taken **literally**.

8. Conclusion

Theoretical Semiophysics – Gödel Mapping should be read not as a mathematical proof but as a speculative philosophical essay. Its enduring insight is that **meaning, truth, and physical law do not require intuitive foundations**. Instead, they emerge from formal symbolic systems that tolerate paradox, abstraction, and infinity.

In this sense, Gödel's incompleteness and the value -121 are not curiosities but exemplars of a deeper epistemic structure—one in which reality itself appears accessible only through symbols whose ultimate justification lies in consistency and empirical success, not intuition.