<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>
<body text="#000000" bgcolor="#f9f9fa">
<p><span class="base"><span class="mord">foutje in de opmaak</span></span></p>
<p><span class="base"><span class="mord"><br>
</span></span></p>
<p><span class="base"><span class="mord">1</span><span
class="mspace"></span><span class="mbin">+</span><span
class="mspace"></span></span><span class="base"><span
class="strut"></span><span class="mord">2</span><span
class="mspace"></span><span class="mbin">+</span><span
class="mspace"></span></span><span class="base"><span
class="strut"></span><span class="mord">3</span><span
class="mspace"></span><span class="mbin">+</span><span
class="mspace"></span></span><span class="base"><span
class="strut"></span><span class="mord">4</span><span
class="mspace"></span><span class="mbin">+</span><span
class="mspace"></span></span><span class="base"><span
class="strut"></span><span class="minner">⋯</span><span
class="mspace"></span><span class="mrel">=</span><span
class="mspace"></span></span><span class="base"><span
class="strut"></span><span class="mord"> −</span><span
class="mord"><span class="mopen nulldelimiter"></span><span
class="mfrac"><span class="vlist-t vlist-t2"><span
class="vlist-r"><span class="vlist"><span><span
class="pstrut"></span><span class="mord"><span
class="mord">1/</span></span></span><span><span
class="pstrut"></span><span class="frac-line"></span></span><span><span
class="pstrut"></span><span class="mord"><span
class="mord">12 en niet -121</span></span></span></span><span
class="vlist-s"></span></span><span class="vlist-r"><span
class="vlist"><span></span></span></span></span></span><span
class="mclose nulldelimiter"></span></span></span></p>
<div class="moz-cite-prefix">On 12/29/25 05:21, René Oudeweg wrote:<br>
</div>
<blockquote type="cite"
cite="mid:4af8abba-c3a7-41e5-bcb1-ee4d52cb08e0@gmail.com">ref: IER
Bulletin #23 Theoretical SemioPhysics: Gödel mapping
<br>
<br>
Gödel Mapping, Divergent Series,
<br>
and the Semiotics of Infinity
<br>
Toward a Clarified Interpretation of Theoretical Semiophysics
<br>
<br>
René Oudeweg
<br>
December 29, 2025
<br>
<br>
<br>
Abstract
<br>
<br>
<br>
This paper analyzes and reformulates the thesis implicit in
Bulletin #23: Theoretical Semiophysics – Gödel Mapping. The
document proposes a
<br>
conceptual linkage between Gödel numbering, the regularized value
of the
<br>
divergent series 1+2+3+⋯=−121, and the interpretive structure of
physical theory. While the original text employs rhetorical and
semiotic associations rather than formal derivations, its core
claim can be reconstructed as a philosophical argument: modern
physics and mathematical logic both rely on formal symbolic
systems whose meaningful results emerge only through non-intuitive
treatments of infinity, self-reference, and abstraction. This
paper clarifies that argument, situates it within established
mathematics and physics, and evaluates its philosophical
coherence.
<br>
<br>
[...]<br>
</blockquote>
</body>
</html>