
Typed Program Examples in Genesis

Anonymous

Overview

This document presents illustrative, typed program examples for Genesis, a structural extension

of the Turing machine. Each example demonstrates the interaction between program structure

and the four primitive operators: □ (stability), △ (generativity), ◦ (reflection), and . . . (open

continuation). Typing judgments are provided to clarify the intended semantics.

1 Example 1: Stable Constant

let x = 42

⊢ 42 : Nat@□ ⊢ x : □ Nat@□

The value x is invariant across all computation steps.

2 Example 2: Generative Structure

let model = init_model()

⊢ init model() : τ@△ ⊢ model : △τ@△

The internal structure of model may evolve during execution.

3 Example 3: Forbidden Coercion

let stable_model : Model = init_model()

△Model ̸≤ □Model

This program is rejected because generative values cannot be treated as stable.

1



4 Example 4: Mode-Sensitive Function

fun f(x : Nat @ ) : Nat @ =

(x + 1)

f : (Nat@□) → (Nat@△)

Stable inputs may safely flow into generative contexts.

5 Example 5: Reflective Interpreter

let self_interp = interpret(delta)

⊢ self interp : ◦1τ@◦1

The computation may inspect or modify its own transition rules.

6 Example 6: Stratified Reflection

let meta_interp = self_interp

⊢ meta interp : ◦2τ@◦2

Each application of ◦ increases reflection depth, preventing paradoxical self-reference.

7 Example 7: Open-Ended Server

let server =

loop {

receive request;

send response;

}

⊢ server : . . . Unit@ . . .

The computation does not halt but remains productive.

2



8 Example 8: Illegal Use of Open Value

let result : Nat = server

. . . Unit ̸≤ Nat

Open-ended computations cannot be coerced into completed values.

9 Example 9: Stable Configuration with Open Execution

let config = load_config()

let service =

run(config)

⊢ config : □ Config@□ ⊢ service : . . . Unit@ . . .

Stable data may parameterize open-ended execution.

10 Example 10: Full Structural Composition

let seed = initial_state

let system = evolve(seed)

let agent = system

let world = interact(agent)

⊢ seed : □τ

⊢ system : △τ

⊢ agent : ◦1τ

⊢ world : . . . τ

This example exercises all four structural operators in ascending order:

□ ≤ △ ≤ ◦ ≤ . . .

Conclusion

These examples demonstrate how the Genesis type system enforces structural discipline over com-

putation. Programs are classified not only by what they compute, but by how they persist, evolve,

reflect, and continue.

3


