<!DOCTYPE html>
<html>
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
  </head>
  <body text="#000000" bgcolor="#f9f9fa">
    <p>Ja dus:</p>
    <p><a class="moz-txt-link-freetext" href="https://math.stackexchange.com/questions/449877/pandigital-rational-approximations-to-the-golden-ratio-and-the-base-of-the-natur">https://math.stackexchange.com/questions/449877/pandigital-rational-approximations-to-the-golden-ratio-and-the-base-of-the-natur</a><br>
    </p>
    <div class="moz-cite-prefix">On 2/4/24 00:43, René Oudeweg wrote:<br>
    </div>
    <blockquote type="cite"
      cite="mid:24f76aff-f602-4388-8fcb-98dc924b5435@gmail.com">
      <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
      <p> <span class="mwe-math-element"><span
            class="mwe-math-mathml-inline mwe-math-mathml-a11y"
            style="display: none;"><math
              xmlns="http://www.w3.org/1998/Math/MathML">
              <semantics>
                <mrow>
                  <mstyle scriptlevel="0" displaystyle="true">
                    <mi>φ</mi> </mstyle> </mrow> </semantics> </math></span>(Is
          deze al bekend? )<br>
        </span></p>
      <p><span class="mwe-math-element">golden ratio = (1 + </span>√5)
        / 2<br>
      </p>
      <p><span class="mwe-math-element"><img
src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e"
            class="mwe-math-fallback-image-inline mw-invert"
            aria-hidden="true"
style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;"
            alt="{\displaystyle \varphi }" moz-do-not-send="true">                  </span> 
        1.61803 3988749894 <br>
        987/610      = 1.61803
        27868852459016393442622950819672131147540984<br>
      </p>
      <p><br>
      </p>
      <div class="moz-cite-prefix">On 2/3/24 21:44, René Oudeweg wrote:<br>
      </div>
      <blockquote type="cite"
        cite="mid:608a95ce-28e2-41d6-8443-604143f3056d@gmail.com">(Meer
        nieuws...) <br>
        <br>
        <br>
        e            = 2.71828 18284590452353602874713526624977572... <br>
        <br>
        reinold@fedora:~/Projects/evenodd$ python eo.py 4000 4 1 
        2.71828 <br>
        <br>
        650/607      = 2.71828
        66556836902800658978583196046128500823723229 <br>
        <br>
        <br>
        SQRT(2)   √2 ≈ 4756/3363 <br>
        <br>
                         1.414213 5623730950488016887242096980785696718
        <br>
        <br>
        reinold@fedora:~/Projects/evenodd$ python eo.py 4000 2 3 1.41421
        <br>
        <br>
        816/577        = 1.41421
        14384748700173310225303292894280762564991334 <br>
        1492/1055      = 1.41421
        80094786729857819905213270142180094786729858 <br>
        1970/1393      = 1.41421
        39267767408470926058865757358219669777458722 <br>
        2448/1731      = 1.41421
        14384748700173310225303292894280762564991334 <br>
        2646/1871      = 1.41421
        69962586851950828433992517370390165686798503 <br>
        3124/2209      = 1.41421
        45767315527387958352195563603440470801267542 <br>
        3322/2349      = 1.41421
        88165176670923797360578969774372073222647935 <br>
        3602/2547      = 1.41421
        27993718099725166862976050255202198665096192 <br>
        3800/2687      = 1.41421
        65984369184964644585039077037588388537402307 <br>
        <br>
        4756/3363      = 1.414213
        4998513232233125185845970859351769253642581 <br>
      </blockquote>
    </blockquote>
  </body>
</html>