<html>
  <head>
    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <address class="h3"><a class="moz-txt-link-freetext"
href="https://www.britannica.com/science/calendar/Calendar-reform-since-the-mid-18th-century">https://www.britannica.com/science/calendar/Calendar-reform-since-the-mid-18th-century</a><br>
    </address>
    <h1 class="h3"><a
        href="https://www.britannica.com/topic/Aztec-calendar"
        class="md-crosslink">The Mexican (Aztec) calendar</a></h1>
    <p class="topic-paragraph">The calendar of the <a
        href="https://www.britannica.com/topic/Aztec"
        class="md-crosslink">Aztecs</a> was derived from earlier
      calendars in the Valley of Mexico and was basically similar to
      that of the Maya. The ritual <a
        href="https://www.britannica.com/science/day"
        class="md-crosslink autoxref">day</a> cycle was called <em><span
          id="ref313521"></span><a
          href="https://www.britannica.com/topic/tonalpohualli"
          class="md-crosslink">tonalpohualli</a></em> and was formed, as
      was the Mayan Tzolkin, by the <a
        href="https://www.merriam-webster.com/dictionary/concurrence"
        class="md-dictionary-link md-dictionary-tt-off"
        data-term="concurrence">concurrence</a> of a cycle of numerals 1
      through 13 with a cycle of 20 day names, many of them similar to
      the day names of the Maya. The <em>tonalpohualli</em> could be
      divided into four or five equal parts, each of four assigned to a
      world quarter and a colour and including the centre of the world
      if the parts were five. To the Aztecs, the 13-day period defined
      by the day numerals was of prime importance, and each of 20 such
      periods was under the patronage of a specific deity. A similar
      list of 20 deities was associated with individual day names, and,
      in addition, there was a list of 13 deities designated as Lords of
      the Day, each accompanied by a flying creature, and a list of nine
      deities known as Lords of the Night. The lists of deities vary
      somewhat in different sources. They were probably used to
      determine the fate of the days by the <span id="ref313522"></span>Tonalpouhque,
      who were priests trained in calendrical divination. These priests
      were consulted as to lucky days whenever an important enterprise
      was undertaken or when a child was born. Children were often named
      after the day of their birth; and tribal gods, who were legendary
      heroes of the past, also bore calendar names.</p>
    <span class="marker p1"></span><span class="marker AM1 am-inline"></span><span
      class="marker MOD1 mod-inline"></span>
    <p class="topic-paragraph">The Aztec <a
        href="https://www.britannica.com/science/year"
        class="md-crosslink autoxref">year</a> of 365 days was also
      similar to the year of the Maya, though probably not synchronous
      with it. It had 18 named months of 20 days each and an additional
      five days, called <em>nemontemi</em>, which were considered to be
      very unlucky. Though some colonial historians mention the use of
      intercalary days, in Aztec annals there is no indication of a
      correction in the length of the year. The years were named after
      days that <a
        href="https://www.britannica.com/science/autumn-season"
        class="md-crosslink autoxref">fall</a> at intervals of 365 days,
      and most scholars believe that these days held a fixed position in
      the year, though there appears to be some disagreement as to
      whether this position was the first day, the last day of the first
      <a href="https://www.britannica.com/science/month"
        class="md-crosslink autoxref">month</a>, or the last day of the
      last month. Since 20 and 365 are both divisible by five, only four
      day names—Acatl (Reed), Tecpatl (Flint), <a
        href="https://www.merriam-webster.com/dictionary/Calli"
        class="md-dictionary-link md-dictionary-tt-off"
        data-term="Calli">Calli</a> (House), and Tochtli (Rabbit)—figure
      in the names of the 52 years that form a cycle with the <em>tonalpohualli</em>.
      The cycle begins with a year 2 Reed and ends with a year 1 Rabbit,
      which was regarded as a dangerous year of bad omen. At the end of
      such a cycle, all household utensils and idols were discarded and
      replaced by new ones, temples were renovated, and <a
        href="https://www.britannica.com/topic/human-sacrifice"
        class="md-crosslink autoxref">human sacrifice</a> was offered to
      the <a href="https://www.britannica.com/place/Sun"
        class="md-crosslink autoxref">Sun</a> at midnight on a
      mountaintop as people awaited a new dawn.</p>
    <span class="marker p2"></span><span class="marker AM2 am-inline"></span><span
      class="marker MOD2 mod-inline"></span>
    <p class="topic-paragraph">The year served to fix the time of
      festivals, which took place at the end of each month. The new year
      was celebrated by the making of a new fire, and a more elaborate
      ceremony was held every four years, when the cycle had run through
      the four day names. Every eight years was celebrated the
      coincidence of the year with the 584-day period of the planet <a
        href="https://www.britannica.com/place/Venus-planet"
        class="md-crosslink autoxref">Venus</a>, and two 52-year cycles
      formed “One Old Age,” when the day cycle, the year, and the period
      of Venus all came together. All these periods were noted also by
      the Maya.</p>
    <span class="marker p3"></span><span class="marker AM3 am-inline"></span><span
      class="marker MOD3 mod-inline"></span>
    <p class="topic-paragraph">Where the Aztecs differed most
      significantly from the Maya was in their more primitive number
      system and in their less precise way of recording dates. Normally,
      they noted only the day on which an event occurred and the name of
      the current year. This is <a
        href="https://www.merriam-webster.com/dictionary/ambiguous"
        class="md-dictionary-link md-dictionary-tt-off"
        data-term="ambiguous">ambiguous</a>, since the same day, as
      designated in the way mentioned above, can occur twice in a year.
      Moreover, years of the same name recur at 52-year intervals, and
      Spanish colonial annals often disagree as to the length of time
      between two events. Other discrepancies in the records are only
      partially explained by the fact that different towns started their
      year with different months. The most widely accepted correlation
      of the calendar of Tenochtitlán with the Christian <a
        href="https://www.britannica.com/science/Julian-calendar"
        class="md-crosslink">Julian calendar</a> is based on the
      entrance of Spanish conquistador <a
        href="https://www.britannica.com/biography/Hernan-Cortes"
        class="md-crosslink">Hernán Cortés</a> into that city on
      November 8, 1519, and on the surrender of <a
        href="https://www.britannica.com/biography/Cuauhtemoc"
        class="md-crosslink">Cuauhtémoc</a> on <a
        href="https://www.merriam-webster.com/dictionary/August"
        class="md-dictionary-link md-dictionary-tt-off"
        data-term="August">August</a> 13, 1521. According to this
      correlation, the first date was a day 8 Wind, the ninth day of the
      month Quecholli, in a year 1 Reed, the 13th year of a cycle.</p>
    <span class="marker p4"></span><span class="marker AM4 am-inline"></span><span
      class="marker MOD4 mod-inline"></span>
    <p class="topic-paragraph">The Mexicans, as all other Mesoamericans,
      believed in the periodic destruction and re-creation of the world.
      The “<span id="ref313523"></span><a
        href="https://www.britannica.com/topic/calendar-stone"
        class="md-crosslink">Calendar Stone</a>” in the <a
        href="https://www.britannica.com/topic/National-Museum-of-Anthropology"
        class="md-crosslink autoxref">Museo Nacional de Antropología</a>
      (National Museum of Anthropology) in <a
        href="https://www.britannica.com/place/Mexico-City"
        class="md-crosslink">Mexico City</a> depicts in its central
      panel the date 4 Ollin (movement), on which they anticipated that
      their current world would be destroyed by earthquake, and within
      it the dates of previous holocausts: 4 Tiger, 4 Wind, 4 Rain, and
      4 Water.</p>
    <span class="marker p5"></span>
    <div class="assemblies">
      <div class="">
        <figure class="md-assembly card print-false"
          data-assembly-id="813">
          <div class="md-assembly-wrapper" data-type="image"><a
              style="--aspect-ratio: 16/9"
href="https://cdn.britannica.com/43/7043-050-DCF36CFF/Aztec-calendar-stone-National-Museum-of-Anthropology-1790.jpg"
              class="position-relative d-flex align-items-center
              justify-content-center media-overlay-link card-media"
              data-href="/media/1/89368/813"><img
src="https://cdn.britannica.com/s:690x388,c:crop/43/7043-050-DCF36CFF/Aztec-calendar-stone-National-Museum-of-Anthropology-1790.jpg"
                alt="Aztec calendar stone; in the National Museum of
                Anthropology, Mexico City. The calendar, discovered in
                1790, is a basaltic monolith. It weighs approximately 25
                tons and is about 12 feet (3.7 metres) in diameter."
                data-width="1080" data-height="1085"></a></div>
        </figure>
      </div>
    </div>
    <section id="ref60227" data-level="3" data-has-spy="true">
      <div class="assemblies">
        <div class="">
          <figure class="md-assembly card print-false"
            data-assembly-id="813"><figcaption class="card-body">
              <div class="md-assembly-caption text-muted font-14
                font-serif">Aztec calendar stone; in the National Museum
                of Anthropology, Mexico City. The calendar, discovered
                in 1790, is a basaltic monolith. It weighs approximately
                25 tons and is about 12 feet (3.7 metres) in diameter.</div>
              <cite class="credit d-block mt-5">Courtesy of the Museo
                Nacional de Antropología, Mexico City; photograph,
                Mexican Ministry of Tourism</cite></figcaption></figure>
        </div>
      </div>
      <span class="marker AM5 am-inline"></span><span class="marker MOD5
        mod-inline"></span></section>
    <span id="ref59341" data-level="2"></span>
    <section id="ref60228" data-level="3" data-has-spy="true">
      <h2 class="h3">Peru: the <span id="ref313524"></span><a
          href="https://www.britannica.com/topic/Inca-calendar"
          class="md-crosslink">Inca calendar</a></h2>
      <p class="topic-paragraph">So little is known about the calendar
        used by the <span id="ref313525"></span><a
          href="https://www.britannica.com/topic/Inca"
          class="md-crosslink">Incas</a> that one can hardly make a
        statement about it for which a contrary opinion cannot be found.
        Some workers in the field even assert that there was no formal
        calendar but only a simple count of lunations. Since no written
        language was used by the Incas, it is impossible to <a
          href="https://www.britannica.com/topic/check-finance"
          class="md-crosslink autoxref">check</a> contradictory
        statements made by early colonial chroniclers. It was widely
        believed that at least some of the <a
          href="https://www.britannica.com/technology/quipu"
          class="md-crosslink">quipu</a> (<em>khipu</em>) of the Incas
        contained calendrical notations.</p>
      <span class="marker p6"></span>
      <div class="assemblies">
        <div class="">
          <figure class="md-assembly card print-false"
            data-assembly-id="3173">
            <div class="md-assembly-wrapper" data-type="image"><a
                style="--aspect-ratio: 16/9"
href="https://cdn.britannica.com/04/3604-050-CFDB193D/Bookkeeper-rendering-accounts-Inca-ruler-Topa-Yupanqui.jpg"
                class="position-relative d-flex align-items-center
                justify-content-center media-overlay-link card-media"
                data-href="/media/1/89368/3173"><img
src="https://cdn.britannica.com/s:690x388,c:crop/04/3604-050-CFDB193D/Bookkeeper-rendering-accounts-Inca-ruler-Topa-Yupanqui.jpg"
                  alt="Felipe Guamán Poma de Ayala: El primer nueva
                  corónica y buen gobierno, depiction of an Inca
                  bookkeeper using a quipu" data-width="859"
                  data-height="1287"></a></div>
          </figure>
        </div>
      </div>
    </section>
    <section id="ref60228" data-level="3" data-has-spy="true">
      <div class="assemblies">
        <div class="">
          <figure class="md-assembly card print-false"
            data-assembly-id="3173"><figcaption class="card-body"><a
                class="md-assembly-title font-weight-bold mb-5
                d-inline-block font-16 font-sans-serif
                media-overlay-link"
href="https://cdn.britannica.com/04/3604-050-CFDB193D/Bookkeeper-rendering-accounts-Inca-ruler-Topa-Yupanqui.jpg"
                data-href="/media/1/89368/3173">Felipe Guamán Poma de
                Ayala: <em>El primer nueva corónica y buen gobierno</em>,
                depiction of an Inca bookkeeper using a quipu</a>
              <div class="md-assembly-caption text-muted font-14
                font-serif">Bookkeeper (right) rendering accounts to the
                Inca ruler Topa Inca Yupanqui. The contents of the
                storehouses (foreground and background) are recorded on
                the bookkeeper's quipu of knotted strings. Drawing by
                Felipe Guamán Poma de Ayala from <em>El primer nueva
                  corónica y buen gobierno</em>.</div>
              <cite class="credit d-block mt-5">Courtesy, Library
                Services Department, American Museum of Natural History,
                New York City (Neg. No. 321546)</cite></figcaption></figure>
        </div>
      </div>
      <span class="marker AM6 am-inline"></span><span class="marker MOD6
        mod-inline"></span>
      <p class="topic-paragraph">Most historians agree that the Incas
        had a calendar based on the observation of both the Sun and the
        <a href="https://www.britannica.com/place/Moon"
          class="md-crosslink autoxref">Moon</a>, and their relationship
        to the stars. Names of 12 lunar months are recorded, as well as
        their association with festivities of the agricultural cycle;
        but there is no suggestion of the widespread use of a numerical
        system for counting time, although a quinary decimal system,
        with names of numbers at least up to 10,000, was used for other
        purposes. The organization of work on the basis of six <span
          id="ref664718"></span><a
          href="https://www.britannica.com/science/week"
          class="md-crosslink">weeks</a> of nine days suggests the
        further possibility of a count by triads that could result in a
        formal month of 30 days.</p>
      <span class="marker p7"></span><span class="marker AM7 am-inline"></span><span
        class="marker MOD7 mod-inline"></span>
      <p class="topic-paragraph">A count of this sort was described by
        German naturalist and explorer <a
          href="https://www.britannica.com/biography/Alexander-von-Humboldt"
          class="md-crosslink">Alexander von Humboldt</a> for a <span
          id="ref313527"></span><a
          href="https://www.britannica.com/topic/Chibcha"
          class="md-crosslink">Chibcha</a> tribe living outside of the
        Inca empire, in the mountainous region of <a
          href="https://www.britannica.com/place/Colombia"
          class="md-crosslink">Colombia</a>. The description is based on
        an earlier manuscript by a village priest, and one authority has
        dismissed it as “wholly imaginary,” but this is not necessarily
        the case. The smallest unit of this calendar was a numerical
        count of three days, which, interacting with a similar count of
        10 days, formed a standard 30-day “month.” Every third year was
        made up of 13 moons, the others having 12. This formed a cycle
        of 37 moons, and 20 of these cycles made up a period of 60
        years, which was subdivided into four parts and could be
        multiplied by 100. A period of 20 months is also mentioned.
        Although the account of the Chibcha system cannot be accepted at
        face value, if there is any truth in it at all it is suggestive
        of devices that may have been used also by the Incas.</p>
      <span class="marker p8"></span><span class="marker AM8 am-inline"></span><span
        class="marker MOD8 mod-inline"></span>
      <p class="topic-paragraph">In one account, it is said that the
        Inca <span id="ref313528"></span><a
          href="https://www.britannica.com/topic/Viracocha"
          class="md-crosslink">Viracocha</a> established a year of 12
        months, each beginning with the <a
          href="https://www.britannica.com/topic/New-Moon-Jewish-festival"
          class="md-crosslink autoxref">New Moon</a>, and that his
        successor, <span id="ref313529"></span><a
          href="https://www.britannica.com/biography/Pachacuti-Inca-Yupanqui"
          class="md-crosslink">Pachacuti</a>, finding confusion in
        regard to the year, built the sun towers in order to keep a
        check on the calendar. Since Pachacuti reigned less than a
        century before the conquest, it may be that the contradictions
        and the meagreness of information on the Inca calendar are due
        to the fact that the system was still in the process of being
        revised when the Spaniards first arrived.</p>
      <span class="marker p9"></span><span class="marker AM9 am-inline"></span><span
        class="marker MOD9 mod-inline"></span><span class="md-signature"><a
href="https://www.britannica.com/contributor/Tatiana-Proskouriakoff/2376">Tatiana
          Proskouriakoff</a></span>
      <p class="topic-paragraph">Despite the uncertainties, further
        research has made it clear that at least at <span
          id="ref313530"></span><a
          href="https://www.britannica.com/place/Cuzco"
          class="md-crosslink">Cuzco</a>, the capital city of the Incas,
        there was an official calendar of the sidereal–lunar type, based
        on the sidereal month of 27 <span class="md-fraction
          md-fraction-oblique"><span><sup>1</sup>/<sub>3</sub></span></span>
        days. It consisted of 328 nights (12 × 27 <span
          class="md-fraction md-fraction-oblique"><span><sup>1</sup>/<sub>3</sub></span></span>)
        and began on June 8/9, coinciding with the heliacal rising (the
        rising just after sunset) of the Pleiades; it ended on the first
        Full Moon after the June solstice (the <a
          href="https://www.britannica.com/science/winter-solstice"
          class="md-crosslink autoxref">winter solstice</a> for the
        Southern Hemisphere). This sidereal–lunar calendar fell short of
        the solar year by 37 days, which consequently were intercalated.
        This <a href="https://www.britannica.com/science/intercalation"
          class="md-crosslink autoxref">intercalation</a>, and thus the
        place of the sidereal–lunar within the solar year, was fixed by
        following the cycle of the Sun as it “strengthened” to <a
          href="https://www.britannica.com/science/summer-season"
          class="md-crosslink autoxref">summer</a> (December) <span
          id="ref313531"></span><a
          href="https://www.britannica.com/science/solstice"
          class="md-crosslink">solstice</a> and “weakened” afterward,
        and by noting a similar cycle in the visibility of the Pleiades.</p>
      <span class="marker p10"></span><span class="marker AM10
        am-inline"></span><span class="marker MOD10 mod-inline"></span><span
        class="md-signature"><a
href="https://www.britannica.com/contributor/Tatiana-Proskouriakoff/2376">Tatiana
          Proskouriakoff</a></span><span class="md-signature"><a
          href="https://www.britannica.com/contributor/Colin-Alistair-Ronan/2514">Colin
          Alistair Ronan</a></span></section>
    <span id="ref59341" data-level="2"></span>
    <section id="ref60229" data-level="3" data-has-spy="true">
      <h2 class="h3">North <span id="ref313532"></span><a
          href="https://www.britannica.com/topic/American-Indian"
          class="md-crosslink">American Indian</a> time counts</h2>
      <p class="topic-paragraph">No North American Indian tribe had a
        true calendar—a single <a
          href="https://www.merriam-webster.com/dictionary/integrated"
          class="md-dictionary-link md-dictionary-tt-off"
          data-term="integrated">integrated</a> system of denoting days
        and longer periods of time. Usually, intervals of time were
        counted independently of one another. The day was a basic unit
        recognized by all tribes, but there is no record of aboriginal
        names for days. A common device for keeping track of days was a
        bundle of sticks of known number, from which one was extracted
        for every day that passed, until the bundle was exhausted.
        Longer periods of time were usually counted by moons, which
        began with the New Moon, or conjunction of the Sun and Moon.
        Years were divided into four seasons, occasionally five, and
        when counted were usually designated by one of the seasons;
        e.g., a North American Indian might say that a certain event had
        happened 10 winters ago. Among sedentary agricultural tribes,
        the cycle of the seasons was of great ritual importance, but the
        time of the beginning of the year varied. Some observed it about
        the time of the <a
          href="https://www.britannica.com/science/vernal-equinox"
          class="md-crosslink autoxref">vernal equinox</a>, others in
        the fall. The <a href="https://www.britannica.com/topic/Hopi"
          class="md-crosslink">Hopi</a> tribe of northern Arizona held a
        new-fire ceremony in November. The <a
          href="https://www.britannica.com/topic/Creek-people"
          class="md-crosslink">Creek</a> ceremony, known as the Busk,
        was held late in July or in August, but it is said that each
        Creek town or settlement set its own date for the celebration.</p>
      <span class="marker p11"></span>
      <div class="assemblies">
        <div class="">
          <figure class="md-assembly card print-false"
            data-assembly-id="96044">
            <div class="md-assembly-wrapper" data-type="image"><a
                style="--aspect-ratio: 16/9"
href="https://cdn.britannica.com/36/99036-050-71FCAC1D/painting-calendar-Kiowa-buffalo-James-Mooney-photograph-1895.jpg"
                class="position-relative d-flex align-items-center
                justify-content-center media-overlay-link card-media"
                data-href="/media/1/89368/96044"><img
src="https://cdn.britannica.com/s:690x388,c:crop/36/99036-050-71FCAC1D/painting-calendar-Kiowa-buffalo-James-Mooney-photograph-1895.jpg"
                  alt="Kiowa calendar painting of the years 1833–92 on
                  buffalo hide, photograph by James Mooney, 1895."
                  data-width="975" data-height="800"></a></div>
          </figure>
        </div>
      </div>
    </section>
    <div class="grid">
      <div class="topic-content col-sm pr-lg-60">
        <section id="ref" data-level="1">
          <section id="ref" data-level="2">
            <section id="ref60229" data-level="3" data-has-spy="true">
              <div class="assemblies">
                <div class="">
                  <figure class="md-assembly card print-false"
                    data-assembly-id="96044"><figcaption
                      class="card-body">
                      <div class="md-assembly-caption text-muted font-14
                        font-serif">Kiowa calendar painting of the years
                        1833–92 on buffalo hide, photograph by James
                        Mooney, 1895.</div>
                      <cite class="credit d-block mt-5">"Seventeenth
                        Annual Report of the Bureau of American
                        Ethnology to the Smithsonian Institution,
                        1895-96," by James Mooney.</cite></figcaption></figure>
                </div>
              </div>
              <span class="marker AM11 am-inline"></span><span
                class="marker MOD11 mod-inline"></span>
              <p class="topic-paragraph">As years were determined by
                seasons and not by a fixed number of days, the
                correlation of moons and years was also approximate and
                not a function of a daily count. Most tribes reckoned 12
                moons to a year. Some northern tribes, notably those of
                <a href="https://www.britannica.com/place/New-England"
                  class="md-crosslink autoxref">New England</a>, and the
                <a href="https://www.britannica.com/topic/Cree"
                  class="md-crosslink">Cree</a> tribes, counted 13. The
                Indians of the northwest coast divided their years into
                two parts, counting six moons to each part, and the <a
                  href="https://www.britannica.com/topic/Kiowa"
                  class="md-crosslink">Kiowa</a> split one of their 12
                moons between two unequal seasons, beginning their year
                with a Full Moon.</p>
              <span class="marker p12"></span><span class="marker AM12
                am-inline"></span><span class="marker MOD12 mod-inline"></span>
              <p class="topic-paragraph">The naming of moons is perhaps
                the first step in transforming them into months. The <span
                  id="ref313533"></span><a
                  href="https://www.britannica.com/topic/Zuni"
                  class="md-crosslink">Zuni</a> Indians of <a
                  href="https://www.britannica.com/place/New-Mexico"
                  class="md-crosslink autoxref">New Mexico</a> named the
                first six moons of the year, referring to the remainder
                by colour <a
                  href="https://www.merriam-webster.com/dictionary/designations"
                  class="md-dictionary-link md-dictionary-tt-off"
                  data-term="designations">designations</a> associated
                with the four cardinal (horizontal) directions, and the
                zenith and the nadir. Only a few Indian tribes attempted
                a more precise correlation of moons and years. The <span
                  id="ref313534"></span><a
                  href="https://www.britannica.com/topic/Creek-people"
                  class="md-crosslink">Creeks</a> are said to have added
                a moon between each pair of years, and the <span
                  id="ref313535"></span><a
                  href="https://www.britannica.com/topic/Haida"
                  class="md-crosslink">Haida</a> from time to time
                inserted a “between moon” in the division of their year
                into two parts. It is said that an unspecified tribe of
                the <a href="https://www.britannica.com/topic/Sioux"
                  class="md-crosslink">Sioux</a> or the <a
                  href="https://www.britannica.com/topic/Ojibwa"
                  class="md-crosslink">Ojibwa</a> (Chippewa) made a
                practice of adding a “lost moon” when 30 moons had
                waned.</p>
              <span class="marker p13"></span><span class="marker AM13
                am-inline"></span><span class="marker MOD13 mod-inline"></span>
              <p class="topic-paragraph">A tally of years following an
                important event was sometimes kept on a notched stick.
                The best-known record <a
                  href="https://www.merriam-webster.com/dictionary/commemorates"
                  class="md-dictionary-link md-dictionary-tt-off"
                  data-term="commemorates">commemorates</a> the
                spectacular <a
                  href="https://www.britannica.com/science/meteor-shower"
                  class="md-crosslink">meteor shower</a> (the Leonids)
                of 1833. Some northern tribes recorded series of events
                by pictographs, and one such record, said to have been
                originally painted on a buffalo robe and known as the
                “Lone-Dog Winter Count,” covers a period of 71 years
                beginning with 1800.</p>
              <span class="marker p14"></span><span class="marker AM14
                am-inline"></span><span class="marker MOD14 mod-inline"></span>
              <p class="topic-paragraph">Early explorers had little
                opportunity to learn about the calendrical devices of
                the Indians, which were probably held sacred and secret.
                Contact with Europeans and their <a
                  href="https://www.britannica.com/topic/church-year"
                  class="md-crosslink autoxref">Christian calendar</a>
                doubtless altered many aboriginal practices. Thus,
                present knowledge of the systems used in the past may
                not reflect their true complexity.</p>
              <span class="marker p15"></span><span class="marker AM15
                am-inline"></span><span class="marker MOD15 mod-inline"></span><span
                class="md-signature"><a
href="https://www.britannica.com/contributor/Tatiana-Proskouriakoff/2376">Tatiana
                  Proskouriakoff</a></span></section>
          </section>
        </section>
        <span class="marker end-of-content"></span><span class="marker
          after-article"></span></div>
      <aside class="col-da-300" data-page="8">
        <div class="rr-module rr-module-1">
          <div class="marketing-RIGHT_RAIL_MODULE marketing-content"
            data-marketing-id="RIGHT_RAIL_MODULE"><a
href="https://subscription.britannica.com/subscribe?partnerCode=BP_House_EUR"
              target="_blank" rel="noopener"> </a></div>
        </div>
      </aside>
    </div>
    <div class="infinite-scroll-container">
      <div class="grid">
        <div class="topic-content col-sm pr-lg-60"> <span class="marker
            before-article"></span><span class="marker h4"></span>
          <section id="ref59346" data-level="1" data-has-spy="true">
            <h1 class="h1">The Western calendar and calendar reforms</h1>
            <p class="topic-paragraph">The calendar now in general
              worldwide use had its origin in the desire for a <a
                href="https://www.britannica.com/science/solar-calendar"
                class="md-crosslink">solar calendar</a> that kept in
              step with the <a
                href="https://www.britannica.com/science/season"
                class="md-crosslink">seasons</a> and possessed fixed
              rules of <a
                href="https://www.britannica.com/science/intercalation"
                class="md-crosslink">intercalation</a>. Because it
              developed in Western Christendom, it had also to provide a
              method for <a
                href="https://www.britannica.com/science/dating-geochronology"
                class="md-crosslink autoxref">dating</a> movable
              religious feasts, the timing of which had been based on a
              lunar reckoning. To <a
                href="https://www.merriam-webster.com/dictionary/reconcile"
                class="md-dictionary-link md-dictionary-tt-off"
                data-term="reconcile">reconcile</a> the lunar and solar
              schemes, features of the <a
                href="https://www.britannica.com/science/Roman-republican-calendar"
                class="md-crosslink">Roman republican calendar</a> and
              the <a
                href="https://www.britannica.com/science/Egyptian-calendar"
                class="md-crosslink">Egyptian calendar</a> were
              combined.</p>
            <span class="marker p1"></span><span class="marker AM1
              am-inline"></span><span class="marker MOD1 mod-inline"></span>
            <p class="topic-paragraph">The Roman republican calendar was
              basically a lunar reckoning and became increasingly out of
              phase with the <span id="ref664721"></span><a
                href="https://www.britannica.com/science/season"
                class="md-crosslink">seasons</a> as time passed. By
              about 50 <span class="text-smallcaps">bce</span> the
              vernal <a
                href="https://www.britannica.com/science/equinox-astronomy"
                class="md-crosslink">equinox</a> that should have fallen
              late in <a
                href="https://www.britannica.com/topic/March-month"
                class="md-crosslink">March</a> fell on the Ides of May,
              some eight weeks later, and it was plain that this error
              would continue to increase. Moreover, the behaviour of the
              Pontifices (<em>see above</em> <a
href="https://www.britannica.com/science/calendar/The-early-Roman-calendar#ref60215"
                class="md-crosslink">The early Roman calendar</a>) made
              it necessary to seek a fixed rule of intercalation in
              order to put an end to arbitrariness in inserting months.</p>
            <span class="marker p2"></span><span class="marker AM2
              am-inline"></span><span class="marker MOD2 mod-inline"></span>
            <p class="topic-paragraph">In addition to the problem of
              intercalation, it was clear that the average Roman
              republican year of 366.25 days would always show a
              continually increasing disparity with the seasons,
              amounting to one <a
                href="https://www.britannica.com/science/month"
                class="md-crosslink autoxref">month</a> every 30 years,
              or three months a century. But the great difficulty facing
              any reformer was that there seemed to be no way of
              effecting a change that would still allow the months to
              remain in step with the phases of the <a
                href="https://www.britannica.com/place/Moon"
                class="md-crosslink autoxref">Moon</a> and the year with
              the seasons. It was necessary to make a fundamental break
              with traditional reckoning to devise an efficient seasonal
              calendar.</p>
            <span class="marker p3"></span><span class="marker AM3
              am-inline"></span><span class="marker MOD3 mod-inline"></span>
            <section id="ref59347" data-level="2" data-has-spy="true">
              <h2 class="h2">The <span id="ref313538"></span><a
                  href="https://www.britannica.com/science/Julian-calendar"
                  class="md-crosslink">Julian calendar</a></h2>
              <p class="topic-paragraph">In the mid-1st century <span
                  class="text-smallcaps">bce</span><span id="ref313537"></span><a
href="https://www.britannica.com/topic/Julius-Caesar-by-Shakespeare"
                  class="md-crosslink">Julius Caesar</a> invited
                astronomer <span id="ref313539"></span><a
                  href="https://www.britannica.com/biography/Sosigenes-of-Alexandria"
                  class="md-crosslink">Sosigenes of Alexandria</a> to
                advise him about the reform of the calendar, and
                Sosigenes decided that the only practical step was to
                abandon the <a
                  href="https://www.britannica.com/science/lunar-calendar"
                  class="md-crosslink">lunar calendar</a> altogether.
                Months must be arranged on a seasonal basis, and a
                tropical (solar) year used, as in the Egyptian calendar,
                but with its length taken as 365 <span
                  class="md-fraction md-fraction-oblique"><span><sup>1</sup>/<sub>4</sub></span></span>
                days.</p>
              <span class="marker p4"></span><span class="marker AM4
                am-inline"></span><span class="marker MOD4 mod-inline"></span>
              <p class="topic-paragraph">To remove the immense
                discrepancy between calendar date and equinox, it was
                decided that the year known in modern times as 46 <span
                  class="text-smallcaps">bce</span> should have two
                intercalations. The first was the customary
                intercalation of the Roman republican calendar due that
                year, the insertion of 23 days following February 23.
                The second intercalation, to bring the calendar in step
                with the equinoxes, was achieved by inserting two
                additional months between the end of <a
                  href="https://www.britannica.com/topic/November-month"
                  class="md-crosslink">November</a> and the beginning of
                <a href="https://www.britannica.com/topic/December"
                  class="md-crosslink">December</a>. This insertion
                amounted to an addition of 67 days, making a year of no
                less than 445 days and causing the beginning of March 45
                <span class="text-smallcaps">bce</span> in the Roman
                republican calendar to <a
                  href="https://www.britannica.com/science/autumn-season"
                  class="md-crosslink autoxref">fall</a> on what is
                still called January 1 of the Julian calendar.</p>
              <span class="marker p5"></span><span class="marker AM5
                am-inline"></span><span class="marker MOD5 mod-inline"></span>
              <p class="topic-paragraph">Previous errors having been
                corrected, the next step was to prevent their
                recurrence. Here Sosigenes’ suggestion about a tropical
                year was adopted and any pretense to a lunar calendar
                was rejected. The figure of 365.25 days was accepted for
                the tropical year, and, to achieve this by a simple
                civil reckoning, Caesar directed that a calendar year of
                365 days be adopted and that an extra <a
                  href="https://www.britannica.com/science/day"
                  class="md-crosslink autoxref">day</a> be intercalated
                every fourth year. Since <a
                  href="https://www.britannica.com/topic/February"
                  class="md-crosslink">February</a> ordinarily had 28
                days, February 24 was the sixth day (using <a
                  href="https://www.merriam-webster.com/dictionary/inclusive"
                  class="md-dictionary-link md-dictionary-tt-off"
                  data-term="inclusive">inclusive</a> numbering) before
                the Kalendae, or beginning of March, and was known as
                the <em>sexto-kalendae</em>; the intercalary day, when
                it appeared, was in effect a “doubling” of the <em>sexto-kalendae</em>
                and was called the <em>bis-sexto-kalendae</em>. This
                practice led to the term <em>bissextile</em> being used
                to refer to such a <a
                  href="https://www.britannica.com/science/leap-year-calendar"
                  class="md-crosslink">leap year</a>. The name leap year
                is a later <a
                  href="https://www.merriam-webster.com/dictionary/connotation"
                  class="md-dictionary-link md-dictionary-tt-off"
                  data-term="connotation">connotation</a>, probably
                derived from the <a
                  href="https://www.britannica.com/topic/Old-Norse-language"
                  class="md-crosslink">Old Norse</a> <em>hlaupa</em>
                (“to leap”) and used because, in a bissextile year, any
                fixed festival after February leaps forward, falling on
                the second weekday from that on which it fell the
                previous year, not on the next weekday as it would do in
                an ordinary year.</p>
              <span class="marker p6"></span><span class="marker AM6
                am-inline"></span><span class="marker MOD6 mod-inline"></span>
              <p class="topic-paragraph">Apparently, the <span
                  id="ref313540"></span><a
                  href="https://www.britannica.com/topic/pontifex"
                  class="md-crosslink">Pontifices</a> misinterpreted the
                edict and inserted the intercalation too frequently. The
                error arose because of the Roman practice of inclusive
                numbering, so that an intercalation once every fourth
                year meant to them intercalating every three years,
                because a bissextile year was counted as the first year
                of the subsequent four-year period. This error continued
                undetected for 36 years, during which period 12 days
                instead of nine were added. The emperor <span
                  id="ref313541"></span><a
                  href="https://www.britannica.com/biography/Augustus-Roman-emperor"
                  class="md-crosslink">Augustus</a> then made a
                correction by omitting intercalary days between 8 <span
                  class="text-smallcaps">bce</span> and 8 <span
                  class="text-smallcaps">ce</span>. As a consequence, it
                was not until several decades after its inception that
                the Julian calendar came into proper operation, a fact
                that is important in <a
                  href="https://www.britannica.com/topic/chronology"
                  class="md-crosslink autoxref">chronology</a> but is
                all too frequently forgotten.</p>
              <span class="marker p7"></span><span class="marker AM7
                am-inline"></span><span class="marker MOD7 mod-inline"></span>
              <p class="topic-paragraph">It seems that the months of the
                Julian calendar were taken over from the Roman
                republican calendar but were slightly modified to
                provide a more even pattern of numbering. The republican
                calendar months of March, <a
                  href="https://www.britannica.com/topic/May-month"
                  class="md-crosslink">May</a>, and <a
                  href="https://www.britannica.com/topic/July"
                  class="md-crosslink autoxref">Quintilis</a> (<a
                  href="https://www.britannica.com/topic/July"
                  class="md-crosslink">July</a>), which had each
                possessed 31 days, were retained unaltered. Although
                there is some doubt about the specific details, changes
                may have occurred in the following way. Except for <a
                  href="https://www.britannica.com/topic/October-month"
                  class="md-crosslink">October</a>, all the months that
                had previously had only 29 days had either one or two
                days added. <a
                  href="https://www.britannica.com/topic/January"
                  class="md-crosslink">January</a>, <a
                  href="https://www.britannica.com/topic/September"
                  class="md-crosslink">September</a>, and November
                received two days, bringing their totals to 31, while <a
                  href="https://www.britannica.com/topic/April"
                  class="md-crosslink">April</a>, <a
                  href="https://www.britannica.com/topic/June"
                  class="md-crosslink">June</a>, Sextilis (<a
                  href="https://www.britannica.com/topic/August-month"
                  class="md-crosslink">August</a>), and December
                received one day each, bringing their totals to 30.
                October was reduced by one day to a total of 30 days and
                February increased to 29 days, or 30 in a bissextile
                year. With the exception of February, the scheme
                resulted in months having 30 or 31 days alternately
                throughout the year. And in order to help farmers,
                Caesar issued an <span id="ref313542"></span><a
                  href="https://www.britannica.com/topic/almanac"
                  class="md-crosslink">almanac</a> showing on which
                dates of his new calendar various seasonal astronomical
                phenomena would occur.</p>
              <span class="marker p8"></span><span class="marker AM8
                am-inline"></span><span class="marker MOD8 mod-inline"></span>
              <p class="topic-paragraph">These arrangements for the
                months can only have remained in force for a short time,
                because in 8 <span class="text-smallcaps">bce</span>
                changes were made by Augustus. In 44 <span
                  class="text-smallcaps">bce</span>, the second year of
                the Julian calendar, the Senate proposed that the name
                of the month Quintilis be changed to Julius (July), in
                honour of Julius Caesar, and in 8 <span
                  class="text-smallcaps">bce</span> the name of Sextilis
                was similarly changed to Augustus (<a
                  href="https://www.merriam-webster.com/dictionary/August"
                  class="md-dictionary-link md-dictionary-tt-off"
                  data-term="August">August</a>). Perhaps because
                Augustus felt that his month must have at least as many
                days as Julius Caesar’s, February was reduced to 28 days
                and August increased to 31. But because this made three
                31-day months (July, August, and September) appear in
                succession, Augustus is supposed to have reduced
                September to 30 days, added a day to October to make it
                31 days, reduced November by one day to 30 days, and
                increased December from 30 to 31 days, giving the months
                the lengths they have today.</p>
              <span class="marker p9"></span><span class="marker AM9
                am-inline"></span><span class="marker MOD9 mod-inline"></span>
              <p class="topic-paragraph">Several scholars, however,
                believe that Caesar originally left February with 28
                days (in order to avoid affecting certain religious
                rites observed in honour of the gods of the netherworld)
                and added two days to Sextilis for a total of 31;
                January, March, May, Quintilis, October, and December
                also had 31 days, with 30 days for April, June,
                September, and November. The subsequent change of
                Sextilis to Augustus therefore involved no addition of
                days to the latter.</p>
              <span class="marker p10"></span><span class="marker AM10
                am-inline"></span><span class="marker MOD10 mod-inline"></span>
              <p class="topic-paragraph">The Julian calendar retained
                the Roman republican calendar method of numbering the
                days of the month. Compared with the present system, the
                Roman numbering seems to run backward, for the first day
                of the month was known as the <span id="ref313543"></span>Kalendae,
                but subsequent days were not enumerated as so many after
                the Kalendae but as so many before the following Nonae
                (“nones”), the day called nonae being the ninth day
                before the <span id="ref313544"></span>Ides (from <em>iduare</em>,
                meaning “to divide”), which occurred in the middle of
                the month and were supposed to coincide with the Full
                Moon. Days after the Nonae and before the Ides were
                numbered as so many before the Ides, and those after the
                Ides as so many before the Kalendae of the next month.</p>
              <span class="marker p11"></span><span class="marker AM11
                am-inline"></span><span class="marker MOD11 mod-inline"></span>
              <p class="topic-paragraph">It should be noted that there
                were no weeks in the original Julian calendar. The days
                were designated either <em>dies fasti</em> or <em>dies
                  nefasti</em>, the former being business days and days
                on which the courts were open; this had been the
                practice in the Roman republican calendar. Julius Caesar
                designated his additional days all as <em>dies fasti</em>,
                and they were added at the end of the month so that
                there was no interference with the dates traditionally
                fixed for <em>dies comitiales</em> (days on which
                public assemblies might be convened) and <em>dies festi</em>
                and <em>dies feriae</em> (days for religious festivals
                and holy days). Originally, then, the Julian calendar
                had a permanent set of dates for administrative matters.
                The official introduction of the seven-day <a
                  href="https://www.britannica.com/science/week"
                  class="md-crosslink autoxref">week</a> by Emperor <span
                  id="ref313545"></span><a
                  href="https://www.britannica.com/biography/Constantine-I-Roman-emperor"
                  class="md-crosslink">Constantine I</a> in the 4th
                century <span class="text-smallcaps">ce</span>
                disrupted this arrangement.</p>
              <span class="marker p12"></span><span class="marker AM12
                am-inline"></span><span class="marker MOD12 mod-inline"></span>
              <p class="topic-paragraph">It appears, from the date of
                insertion of the intercalary month in the Roman
                republican calendar and the habit of designating years
                by the names of the consuls, that the calendar year had
                originally commenced in March, which was the date when
                the new consul took office. In 222 <span
                  class="text-smallcaps">bce</span> the date of assuming
                duties was fixed as March 15, but in 153 <span
                  class="text-smallcaps">bce</span> it was transferred
                to the Kalendae of <span id="ref313546"></span><a
                  href="https://www.britannica.com/topic/January"
                  class="md-crosslink">January</a>, and there it
                remained. January therefore became the first month of
                the year, and in the western region of the <span
                  id="ref313547"></span><a
                  href="https://www.britannica.com/place/Roman-Empire"
                  class="md-crosslink">Roman Empire</a>, this practice
                was carried over into the Julian calendar. In the
                eastern provinces, however, years were often reckoned
                from the accession of the reigning emperor, the second
                beginning on the first New Year’s day after the
                accession; and the date on which this occurred varied
                from one province to another.</p>
              <span class="marker p13"></span><span class="marker AM13
                am-inline"></span><span class="marker MOD13 mod-inline"></span></section>
          </section>
          <span class="marker end-of-content"></span><span class="marker
            after-article"></span></div>
        <aside class="col-da-300" data-page="9">
          <div class="rr-module rr-module-1">
            <div class="marketing-RIGHT_RAIL_MODULE marketing-content"
              data-marketing-id="RIGHT_RAIL_MODULE"><a
href="https://subscription.britannica.com/subscribe?partnerCode=BP_House_EUR"
                target="_blank" rel="noopener"> </a></div>
          </div>
        </aside>
      </div>
    </div>
    <div class="infinite-scroll-container">
      <div class="grid">
        <div class="topic-content col-sm pr-lg-60"> <span class="marker
            before-article"></span>
          <section id="ref59348" data-level="2" data-has-spy="true">
            <h1 class="h2">The <span id="ref313548"></span><a
                href="https://www.britannica.com/topic/Gregorian-calendar"
                class="md-crosslink">Gregorian calendar</a></h1>
            <p class="topic-paragraph">The <a
                href="https://www.britannica.com/science/Julian-calendar"
                class="md-crosslink autoxref">Julian calendar</a> year
              of 365.25 days was too long, since the correct value for
              the tropical year is 365.242199 days. This error of 11
              minutes 14 seconds per year amounted to almost one and a
              half days in two centuries, and seven days in 1,000 years.
              Once again the calendar became increasingly out of phase
              with the seasons. From time to time, the problem was
              placed before church councils, but no action was taken
              because the astronomers who were consulted doubted whether
              enough precise information was available for a really
              accurate value of the tropical year to be obtained.</p>
            <span class="marker p1"></span>
            <div class="assemblies">
              <div class="">
                <figure class="md-assembly card print-false"
                  data-assembly-id="127418">
                  <div class="md-assembly-wrapper" data-type="image"><a
                      style="--aspect-ratio: 16/9"
href="https://cdn.britannica.com/53/130653-050-532C1F10/clock-St-John-the-Baptist-cathedral-Lyon-2019.jpg"
                      class="position-relative d-flex align-items-center
                      justify-content-center media-overlay-link
                      card-media" data-href="/media/1/89368/127418"><img
src="https://cdn.britannica.com/s:690x388,c:crop/53/130653-050-532C1F10/clock-St-John-the-Baptist-cathedral-Lyon-2019.jpg"
                        alt="Astronomical clock from the 14th century
                        that can be used to determine religious feast
                        days until the year 2019; in the cathedral of
                        St. John the Baptist, Lyon, France."
                        data-width="1600" data-height="1071"></a></div>
                </figure>
              </div>
            </div>
          </section>
        </div>
      </div>
    </div>
    <div class="infinite-scroll-container">
      <div class="grid">
        <div class="topic-content col-sm pr-lg-60">
          <section id="ref59348" data-level="2" data-has-spy="true">
            <div class="assemblies">
              <div class="">
                <figure class="md-assembly card print-false"
                  data-assembly-id="127418"><figcaption
                    class="card-body">
                    <div class="md-assembly-caption text-muted font-14
                      font-serif">Astronomical clock from the 14th
                      century that can be used to determine religious
                      feast days until the year 2019; in the cathedral
                      of St. John the Baptist, Lyon, France.</div>
                    <cite class="credit d-block mt-5">©
                      Jakez/Shutterstock.com</cite></figcaption></figure>
              </div>
            </div>
            <span class="marker AM1 am-inline"></span><span
              class="marker MOD1 mod-inline"></span>
            <p class="topic-paragraph">By 1545, however, the <a
                href="https://www.britannica.com/science/vernal-equinox"
                class="md-crosslink autoxref">vernal equinox</a>, which
              was used in determining <a
                href="https://www.britannica.com/topic/Easter-holiday"
                class="md-crosslink">Easter</a>, had moved 10 days from
              its proper date; and in December, when the <span
                id="ref313549"></span><a
                href="https://www.britannica.com/event/Council-of-Trent"
                class="md-crosslink">Council of Trent</a> met for the
              first of its sessions, it authorized Pope <span
                id="ref313550"></span><a
                href="https://www.britannica.com/biography/Paul-III"
                class="md-crosslink">Paul III</a> to take action to
              correct the error. Correction required a solution,
              however, that neither Paul III nor his successors were
              able to obtain in satisfactory form until nearly 1572, the
              year of election of Pope <span id="ref313551"></span><a
                href="https://www.britannica.com/biography/Gregory-XIII"
                class="md-crosslink">Gregory XIII</a>. Gregory found
              various proposals awaiting him and agreed to issue a bull
              that the <a
                href="https://www.britannica.com/topic/Jesuits"
                class="md-crosslink">Jesuit</a> astronomer <span
                id="ref313552"></span><a
                href="https://www.britannica.com/biography/Christopher-Clavius"
                class="md-crosslink">Christopher Clavius</a> (1537–1612)
              began to draw up, using suggestions made by the astronomer
              and physician <span id="ref313553"></span>Luigi Lilio
              (also known as Aloysius Lilius; died 1576).</p>
            <span class="marker p2"></span><span class="marker AM2
              am-inline"></span><span class="marker MOD2 mod-inline"></span>
            <p class="topic-paragraph">The papal bull <em><span
                  id="ref793372"></span><a
                  href="https://www.britannica.com/topic/Inter-gravissimas"
                  class="md-crosslink">Inter gravissimas</a></em> (“In
              the gravest concern”) was issued on February 24, 1582.
              First, in order to bring the vernal equinox back to March
              21, the day following the Feast of St. Francis (that is,
              October 5) was to become October 15, thus omitting 10
              days. Second, to bring the year closer to the true
              tropical year, a value of 365.2422 days was accepted. This
              value differed by 0.0078 days per year from the Julian
              calendar reckoning, amounting to 0.78 days per century, or
              3.12 days every 400 years. It was therefore <a
                href="https://www.merriam-webster.com/dictionary/promulgated"
                class="md-dictionary-link md-dictionary-tt-off"
                data-term="promulgated">promulgated</a> that three out
              of every four centennial years should be common years,
              that is, not leap years; and this practice led to the rule
              that no centennial years should be leap years unless
              exactly divisible by 400. Thus, 1700, 1800, and 1900 were
              not leap years, as they would have been in the Julian
              calendar, but the year 2000 was. The reform, which
              established what became known as the Gregorian calendar
              and laid down rules for calculating the date of <span
                id="ref313554"></span><a
                href="https://www.britannica.com/topic/Easter-holiday"
                class="md-crosslink">Easter</a>, was well received by
              such astronomers as <a
                href="https://www.britannica.com/biography/Johannes-Kepler"
                class="md-crosslink">Johannes Kepler</a> and <a
href="https://www.britannica.com/biography/Tycho-Brahe-Danish-astronomer"
                class="md-crosslink">Tycho Brahe</a> and by the Catholic
              princes of Europe. Many Protestants, however, saw it as
              the work of the <a
                href="https://www.britannica.com/topic/Antichrist"
                class="md-crosslink">Antichrist</a> and refused to adopt
              it. Eventually all of Europe, as late as 1918 in the case
              of Russia, adopted the Gregorian calendar.</p>
            <span class="marker p3"></span><span class="marker AM3
              am-inline"></span><span class="marker MOD3 mod-inline"></span><span
              id="ref59348" data-level="2"></span>
            <section id="ref60230" data-level="3" data-has-spy="true">
              <h2 class="h3">The date of Easter</h2>
              <p class="topic-paragraph">Easter was the most important
                feast of the Christian church, and its place in the
                calendar determined the position of the rest of the
                church’s movable feasts (<em>see</em> <a
href="https://www.britannica.com/topic/Christianity/Aspects-of-the-Christian-religion#ref67528"
                  class="md-crosslink">church year</a>). Because its
                timing depended on both the Moon’s phases and the vernal
                equinox, <a
                  href="https://www.merriam-webster.com/dictionary/ecclesiastical"
                  class="md-dictionary-link md-dictionary-tt-off"
                  data-term="ecclesiastical">ecclesiastical</a>
                authorities had to seek some way of <a
                  href="https://www.merriam-webster.com/dictionary/reconciling"
                  class="md-dictionary-link md-dictionary-tt-off"
                  data-term="reconciling">reconciling</a> lunar and
                solar calendars. Some simple form of computation, usable
                by nonastronomers in remote places, was desirable. There
                was no easy or obvious solution, and to make things more
                difficult there was no unanimous agreement on the way in
                which Easter should be calculated, even in a <a
                  href="https://www.britannica.com/science/lunar-calendar"
                  class="md-crosslink autoxref">lunar calendar</a>.</p>
              <span class="marker p4"></span><span class="marker AM4
                am-inline"></span><span class="marker MOD4 mod-inline"></span>
              <p class="topic-paragraph">Easter, being the festival of
                the <span id="ref313555"></span><a
                  href="https://www.britannica.com/topic/resurrection-religion"
                  class="md-crosslink">Resurrection</a>, had to depend
                on the <a
                  href="https://www.britannica.com/science/dating-geochronology"
                  class="md-crosslink autoxref">dating</a> of the <a
                  href="https://www.britannica.com/topic/crucifixion-capital-punishment"
                  class="md-crosslink">Crucifixion</a>, which occurred
                three days earlier and just before the Jewish <span
                  id="ref313556"></span><a
                  href="https://www.britannica.com/topic/Passover"
                  class="md-crosslink">Passover</a>. The Passover was
                celebrated on the 14th day of Nisan, the first <a
                  href="https://www.britannica.com/science/month"
                  class="md-crosslink autoxref">month</a> in the Jewish
                religious year—that is, the lunar month the 14th day of
                which falls on or next after the vernal equinox. The
                Christian churches in the eastern Mediterranean area
                celebrated Easter on the 14th of Nisan on whatever day
                of the <a
                  href="https://www.britannica.com/science/week"
                  class="md-crosslink autoxref">week</a> it might <a
                  href="https://www.britannica.com/science/autumn-season"
                  class="md-crosslink autoxref">fall</a>, but the rest
                of Christendom adopted a more elaborate reckoning to
                ensure that it was celebrated on a <a
                  href="https://www.britannica.com/topic/Sunday-day-of-week"
                  class="md-crosslink autoxref">Sunday</a> in the
                Passover week.</p>
              <span class="marker p5"></span><span class="marker AM5
                am-inline"></span><span class="marker MOD5 mod-inline"></span>
              <p class="topic-paragraph">To determine precisely how the
                Resurrection and Easter Day should be dated, reference
                was made to the <span id="ref313557"></span><a
                  href="https://www.britannica.com/topic/Gospel-New-Testament"
                  class="md-crosslink">Gospels;</a> but, even as early
                as the 2nd century <span class="text-smallcaps">ce</span>,
                difficulties had arisen, because the synoptic Gospels (<a
href="https://www.britannica.com/topic/Gospel-According-to-Matthew"
                  class="md-crosslink">Matthew</a>, <a
                  href="https://www.britannica.com/topic/Gospel-According-to-Mark"
                  class="md-crosslink">Mark</a>, and <a
                  href="https://www.britannica.com/topic/Gospel-According-to-Luke"
                  class="md-crosslink">Luke</a>) appeared to give a
                different date from the Gospel According to <a
                  href="https://www.britannica.com/topic/Gospel-According-to-John"
                  class="md-crosslink">John</a> for the Crucifixion.
                This difference led to controversy that was later <a
                  href="https://www.merriam-webster.com/dictionary/exacerbated"
                  class="md-dictionary-link md-dictionary-tt-off"
                  data-term="exacerbated">exacerbated</a> by another
                difficulty caused by the Jewish reckoning of a day from
                sunset to sunset. The question arose of how the evening
                of the 14th day should be calculated, and some—the <span
                  id="ref313558"></span>Quintodecimans—claimed that it
                meant one particular evening, but others—the <span
                  id="ref313559"></span><a
                  href="https://www.britannica.com/topic/Quartodecimanism"
                  class="md-crosslink">Quartodecimans</a>—claimed that
                it meant the evening before, since sunset heralded a new
                day. Both sides had their protagonists, the Eastern
                churches supporting the Quartodecimans, the Western
                churches the Quintodecimans. The question was finally
                decided by the Western church in favour of the
                Quintodecimans, though there is debate whether this was
                at the <a
                  href="https://www.britannica.com/event/First-Council-of-Nicaea-325"
                  class="md-crosslink">Council of Nicaea</a> in 325 or
                later. The <span id="ref313560"></span><a
                  href="https://www.britannica.com/topic/Eastern-Orthodoxy"
                  class="md-crosslink">Eastern churches</a> decided to
                retain the Quartodeciman position, and the church in
                Britain, which had few links with European churches at
                this time, retained the Quartodeciman position until
                Roman missionaries arrived in the 6th century, when a
                change was made. The dating of Easter in the Gregorian
                calendar was based on the decision of the Western
                church, which decreed that Easter should be celebrated
                on the Sunday immediately following the (Paschal) Full
                Moon that fell on or after the vernal equinox, which
                they took as March 21. The church also ordered that if
                this Full Moon fell on a Sunday, the festival should be
                held seven days later.</p>
              <span class="marker p6"></span><span class="marker AM6
                am-inline"></span><span class="marker MOD6 mod-inline"></span>
              <p class="topic-paragraph">With these provisions in mind,
                the problem could be broken down into two parts: first,
                devising a simple but effective way of calculating the
                days of the week for any date in the year and, second,
                determining the date of the Full Moons in any year. The
                first part was solved by the use of a letter code
                derived from a similar Roman system adopted for
                determining market days. For ecclesiastical use, the
                code gave what was known as the Sunday, or <span
                  id="ref313561"></span><a
                  href="https://www.britannica.com/science/dominical-letter"
                  class="md-crosslink">dominical, letter</a>.</p>
              <span class="marker p7"></span><span class="marker AM7
                am-inline"></span><span class="marker MOD7 mod-inline"></span>
              <p class="topic-paragraph">The seven letters A through G
                are each assigned to a day, consecutively from January 1
                so that January 1 appears as A, January 2 as B, to
                January 7 which appears as G, the cycle then continuing
                with January 8 as A, January 9 as B, and so on. Then in
                any year the first Sunday is bound to be assigned to one
                of the letters A–G in the first cycle, and all Sundays
                in the year possess that dominical letter. For example,
                if the first Sunday falls on January 3, <a
                  href="https://www.britannica.com/science/coulomb"
                  class="md-crosslink autoxref">C</a> will be the
                dominical letter for the whole year. No dominical letter
                is placed against the <span id="ref313562"></span><a
                  href="https://www.britannica.com/science/leap-year-calendar"
                  class="md-crosslink">intercalary day</a>, February 29,
                but, since it is still counted as a weekday and given a
                name, the series of letters moves back one day every <a
href="https://www.britannica.com/science/leap-year-calendar"
                  class="md-crosslink autoxref">leap year</a> after <a
href="https://www.britannica.com/science/intercalation"
                  class="md-crosslink autoxref">intercalation</a>. Thus,
                a leap year beginning with the dominical letter C will
                change to a year with the dominical letter B on March 1;
                and in lists of dominical letters, all leap years are
                given a double letter notation, in the example just
                quoted, CB. It is not difficult to see what dominical
                letter or letters apply to any particular year, and it
                is also a comparatively simple matter to draw up a table
                of dominical letters for use in determining Easter
                Sunday. The possible dates on which Easter Sunday can
                fall are written down—they run from March 22 through
                April 25—and against them the dominical letters for a
                cycle of seven years. Once the dominical letter for a
                year is known, the possible Sundays for celebrating
                Easter can be read directly from the table. This system
                does not, of course, completely determine Easter; to do
                so, additional information is required.</p>
              <span class="marker p8"></span><span class="marker AM8
                am-inline"></span><span class="marker MOD8 mod-inline"></span>
              <p class="topic-paragraph">This must provide dates for <span
                  id="ref313563"></span><a
                  href="https://www.britannica.com/science/full-Moon-lunar-phase"
                  class="md-crosslink">Full Moons</a> throughout the
                year, and for this a lunar cycle like the <a
                  href="https://www.britannica.com/science/Metonic-cycle"
                  class="md-crosslink">Metonic cycle</a> was originally
                used. Tables were prepared, again using the range of
                dates on which Easter Sunday could appear, and against
                each date a number from one through 19 was placed. This
                number indicated which of the 19 years of the lunar
                cycle would give a Full Moon on that day. From <a
                  href="https://www.merriam-webster.com/dictionary/medieval"
                  class="md-dictionary-link md-dictionary-tt-off"
                  data-term="medieval">medieval</a> times these were
                known as <span id="ref313564"></span><a
                  href="https://www.britannica.com/science/golden-number"
                  class="md-crosslink">golden numbers</a>, possibly from
                a name used by the Greeks for the numbers on the Metonic
                cycle or because gold is the colour used for them in
                manuscript calendars.</p>
              <span class="marker p9"></span><span class="marker AM9
                am-inline"></span><span class="marker MOD9 mod-inline"></span>
              <p class="topic-paragraph">The system of golden numbers
                was introduced in 530, but the numbers were arranged as
                they should have been if adopted at the Council of
                Nicaea two centuries earlier; and the cycle was taken to
                begin in a year when the <a
                  href="https://www.britannica.com/topic/New-Moon-Jewish-festival"
                  class="md-crosslink autoxref">New Moon</a> fell on
                January 1. Working backward, chronologers found that
                this date had occurred in the year preceding 1 <span
                  class="text-smallcaps">ce</span>, and therefore the <a
href="https://www.britannica.com/science/golden-number"
                  class="md-crosslink autoxref">golden number</a> for
                any year is found by adding one to the year and dividing
                that sum by 19. The golden number is the remainder or,
                if there is no remainder, 19.</p>
              <span class="marker p10"></span><span class="marker AM10
                am-inline"></span><span class="marker MOD10 mod-inline"></span>
              <p class="topic-paragraph">To compute the date of Easter,
                the medieval chronologer computed the golden number for
                the year and then consulted his table to see by which
                date this number lay. Having found this date, that of
                the first Full Moon after March 20, he consulted his
                table of dominical letters and saw the next date against
                which the dominical letter for that year appeared; this
                was the Sunday to be designated Easter. The method,
                modified for dropping centennial leap years as practiced
                in the Gregorian calendar, is still given in the English
                prayer book, although it was officially discarded when
                the Gregorian calendar was introduced.</p>
              <span class="marker p11"></span><span class="marker AM11
                am-inline"></span><span class="marker MOD11 mod-inline"></span>
              <p class="topic-paragraph">The system of golden numbers
                was eventually rejected because the astronomical Full
                Moon could differ by as much as two days from the date
                they indicated. It was Lilius who had proposed a more
                accurate system based on one that had already been in
                use unofficially while the Julian calendar was still in
                force. Called the <span id="ref313565"></span>epact—the
                word is derived from the Greek <em>epagein</em>,
                meaning “to intercalate”—this was again a system of
                numbers concerned with the Moon’s phases, but now
                indicating the age of the Moon on the first day of the
                year, from which the age of the Moon on any day of the
                year may be found, at least approximately, by counting,
                using alternately months of 29 and 30 days.</p>
              <span class="marker p12"></span><span class="marker AM12
                am-inline"></span><span class="marker MOD12 mod-inline"></span>
              <p class="topic-paragraph">The epact as previously used
                was not, however, completely accurate because, like the
                golden number, it had been based on the Metonic cycle.
                This 19-year cycle was in error, the discrepancy
                amounting to eight days every 2,500 years. A one-day
                change on certain centennial years was then instituted
                by making the computed age of the Moon one day later
                seven times, at 300-year intervals, and an eighth time
                after a subsequent 400 years. This operation was known
                as the lunar correction, but it was not the only
                correction required; there was another.</p>
              <span class="marker p13"></span><span class="marker AM13
                am-inline"></span><span class="marker MOD13 mod-inline"></span>
              <p class="topic-paragraph">Because the Gregorian calendar
                used a more accurate value for the tropical year than
                the Julian calendar and achieved this by omitting most
                centennial leap years, <span id="ref313566"></span><a
                  href="https://www.britannica.com/biography/Christopher-Clavius"
                  class="md-crosslink">Clavius</a> decided that, when
                the cycle of epacts reached an ordinary centennial year,
                the number of the epact should be reduced by one; this
                reduction became known as the solar correction.</p>
              <span class="marker p14"></span><span class="marker AM14
                am-inline"></span><span class="marker MOD14 mod-inline"></span>
              <p class="topic-paragraph">One advantage of the epact
                number was that it showed the age of the Moon on January
                1 and so permitted a simple calculation of the dates of
                New Moon and Full Moon for the ensuing year. Another was
                that it lent itself to the construction of cycles of 30
                epact numbers, each diminishing by one from the previous
                cycle, so that, when it became necessary at certain
                centennial years to shift from one cycle to another,
                there would still be a cycle ready that retained a
                correct relationship between dates and New Moons.</p>
              <span class="marker p15"></span><span class="marker AM15
                am-inline"></span><span class="marker MOD15 mod-inline"></span>
              <p class="topic-paragraph">For determining Easter, a table
                was prepared of the golden numbers, one through 19, and
                below them the cycles of epacts for about 7,000 years;
                after this time, all the epact cycles are repeated. A
                second table was then drawn up, giving the dates of
                Easter Full Moons for different epact numbers. Once the
                epact for the year was known, the date of the Easter
                Full Moon could be immediately obtained, while
                consultation of a table of dominical letters showed
                which was the next Sunday. Thus, the Gregorian system of
                epacts, while more accurate than the old golden numbers,
                still forced the chronologer to consult complex
                astronomical tables.</p>
              <span class="marker p16"></span><span class="marker AM16
                am-inline"></span><span class="marker MOD16 mod-inline"></span></section>
            <span id="ref59348" data-level="2"></span>
            <section id="ref60231" data-level="3" data-has-spy="true">
              <h2 class="h3">Adoption in various countries</h2>
              <p class="topic-paragraph">The derivation of the term <em>style</em>
                for a type of calendar seems to have originated sometime
                soon after the 6th century as a result of developments
                in calendar computation in the previous 200 years. In
                463 <span class="text-smallcaps">ce</span> <span
                  id="ref313567"></span><a
                  href="https://www.britannica.com/biography/Victorius-of-Aquitaine"
                  class="md-crosslink">Victorius</a> (or Victorinus) of
                Aquitaine, who had been appointed by Pope Hilarius to
                undertake calendar revision, devised the Great Paschal
                (i.e., Passover) period, sometimes later referred to as
                the Victorian period. It was a combination of the <span
                  id="ref664719"></span><a
                  href="https://www.britannica.com/place/Sun"
                  class="md-crosslink">solar</a> cycle of 28 years and
                the Metonic 19-year cycle, bringing the Full <span
                  id="ref664716"></span><a
                  href="https://www.britannica.com/place/Moon"
                  class="md-crosslink">Moon</a> back to the same day of
                the month, and amounted to 28 × 19, or 532 years. In the
                6th century this period was used by <span
                  id="ref313571"></span><a
                  href="https://www.britannica.com/biography/Dionysius-Exiguus"
                  class="md-crosslink">Dionysius Exiguus</a> (Denis the
                Little) in computing the date of Easter, because it gave
                the day of the week for any day in any year, and so it
                also became known as the <span id="ref313568"></span><a
href="https://www.britannica.com/science/Dionysian-period"
                  class="md-crosslink">Dionysian period</a>. Dionysius
                took the year now called 532 <span
                  class="text-smallcaps">ce</span> as the first year of
                a new Great Paschal period and the year now designated 1
                <span class="text-smallcaps">bce</span> as the beginning
                of the previous cycle. In the 6th century it was the
                general belief that this was the year of Christ’s birth,
                and because of this Dionysius introduced the concept of
                numbering years consecutively through the <span
                  id="ref313572"></span>Christian era. The method was
                adopted by some scholars but seems only to have become
                widely used after its popularization by the Venerable <span
                  id="ref313573"></span><a
                  href="https://www.britannica.com/biography/Saint-Bede-the-Venerable"
                  class="md-crosslink">Bede of Jarrow</a> (673?–735),
                whose reputation for scholarship was very high in
                Western <span id="ref313574"></span><a
                  href="https://www.britannica.com/topic/Christianity"
                  class="md-crosslink">Christendom</a> in the 8th
                century. This system of <span class="text-smallcaps">bce</span>/<span
                  class="text-smallcaps">ce</span> numbering threw into
                relief the different practices, or styles, of reckoning
                the beginning of the year then in use. When the
                Gregorian calendar firmly established January 1 as the
                beginning of its year, it was widely referred to as the
                New Style calendar, with the Julian the Old Style
                calendar. In Britain, under the Julian calendar, the
                year had first begun on December 25 and then, from the
                14th century onward, on March 25.</p>
              <span class="marker p17"></span><span class="marker AM17
                am-inline"></span><span class="marker MOD17 mod-inline"></span>
              <p class="topic-paragraph">Because of the division of the
                Eastern and Western Christian churches and of <span
                  id="ref793396"></span><a
                  href="https://www.britannica.com/topic/Protestantism"
                  class="md-crosslink">Protestants</a> and Roman
                Catholics, the obvious advantages of the Gregorian
                calendar were not accepted everywhere, and in some
                places adoption was extremely slow. In France, Italy,
                Luxembourg, Portugal, and Spain, the New Style calendar
                was adopted in 1582, and it was in use by most of the
                German Roman Catholic states as well as by Belgium and
                part of the Netherlands by 1584. Switzerland’s change
                was gradual, on the other <a
                  href="https://www.britannica.com/science/hand-measurement"
                  class="md-crosslink autoxref">hand</a>, beginning in
                1583 and being completed only in 1812. Hungary adopted
                the New Style in 1587, and then there was a pause of
                more than a century before the first Protestant
                countries made the transition from the Old Style
                calendar. In 1699–1700, Denmark and the Dutch and German
                Protestant states embraced the New Style, although the
                Germans declined to adopt the rules laid down for
                determining Easter. The Germans preferred to rely
                instead on astronomical tables and specified the use of
                the <em>Tabulae Rudolphinae</em> (1627; “Rudolphine
                Tables”), based on the 16th-century observations of <span
                  id="ref313575"></span><a
href="https://www.britannica.com/biography/Tycho-Brahe-Danish-astronomer"
                  class="md-crosslink">Tycho Brahe</a>. They acceded to
                the Gregorian calendar rules for Easter only in 1776.
                Britain adopted the New Style in 1752 and Sweden in
                1753, although the Swedes, because they had in 1740
                followed the German Protestants in using their <span
                  id="ref313576"></span><a
                  href="https://www.britannica.com/science/astronomy"
                  class="md-crosslink">astronomical</a> methods for
                determining Easter, declined to adopt the Gregorian
                calendar rules until 1844. <a
                  href="https://www.britannica.com/place/Japan"
                  class="md-crosslink autoxref">Japan</a> adopted the
                New Style in 1873; Egypt adopted it in 1875; and between
                1912 and 1917 it was accepted by Albania, Bulgaria,
                China, Estonia, Latvia, Lithuania, Romania, and Turkey.
                The now-defunct <a
                  href="https://www.britannica.com/place/Soviet-Union"
                  class="md-crosslink autoxref">Soviet Union</a> adopted
                the New Style in 1918, and Greece in 1923.</p>
              <span class="marker p18"></span><span class="marker AM18
                am-inline"></span><span class="marker MOD18 mod-inline"></span>
              <p class="topic-paragraph">In Britain and the British
                dominions, the change was made when the difference
                between the New and Old Style calendars amounted to 11
                days: the lag was covered by naming the day after
                September 2, 1752, as September 14, 1752. There was
                widespread misunderstanding among the public, however,
                even though legislation authorizing the change had been
                framed to avoid injustice and financial hardship. The
                Alaskan territory retained the Old Style calendar until
                1867, when it was transferred from Russia to the United
                States.</p>
              <span class="marker p19"></span><span class="marker AM19
                am-inline"></span><span class="marker MOD19 mod-inline"></span></section>
          </section>
          <span class="marker end-of-content"></span><span class="marker
            after-article"></span></div>
        <aside class="col-da-300" data-page="10">
          <div class="rr-module rr-module-1">
            <div class="marketing-RIGHT_RAIL_MODULE marketing-content"
              data-marketing-id="RIGHT_RAIL_MODULE"><a
href="https://subscription.britannica.com/subscribe?partnerCode=BP_House_EUR"
                target="_blank" rel="noopener"> </a></div>
          </div>
        </aside>
      </div>
    </div>
    <div class="infinite-scroll-container">
      <div class="grid">
        <div class="topic-content col-sm pr-lg-60"> <span class="marker
            before-article"></span>
          <section id="ref" data-level="1">
            <section id="ref59349" data-level="2" data-has-spy="true">
              <h1 class="h2">Calendar reform since the mid-18th century</h1>
              <span id="ref59349" data-level="2"></span>
              <section id="ref60232" data-level="3" data-has-spy="true">
                <h2 class="h3">The <span id="ref313578"></span><a
                    href="https://www.britannica.com/science/French-republican-calendar"
                    class="md-crosslink">French republican calendar</a></h2>
                <p class="topic-paragraph">In late 18th-century France,
                  with the approach of the <span id="ref313577"></span><a
href="https://www.britannica.com/event/French-Revolution"
                    class="md-crosslink">French Revolution</a>, demands
                  began to be made for a radical change in the civil
                  calendar that would divorce it completely from any <a
href="https://www.merriam-webster.com/dictionary/ecclesiastical"
                    class="md-dictionary-link md-dictionary-tt-off"
                    data-term="ecclesiastical">ecclesiastical</a>
                  connections. The first attacks on the <a
                    href="https://www.britannica.com/topic/Gregorian-calendar"
                    class="md-crosslink autoxref">Gregorian calendar</a>
                  and proposals for reform came in 1785 and 1788, the
                  changes being primarily designed to <a
                    href="https://www.merriam-webster.com/dictionary/divest"
                    class="md-dictionary-link md-dictionary-tt-off"
                    data-term="divest">divest</a> the calendar of all
                  its Christian associations. After the storming of the
                  <a href="https://www.britannica.com/topic/Bastille"
                    class="md-crosslink">Bastille</a> in July 1789,
                  demands became more <a
                    href="https://www.merriam-webster.com/dictionary/vociferous"
                    class="md-dictionary-link md-dictionary-tt-off"
                    data-term="vociferous">vociferous</a>, and a new
                  calendar, to start from “the first year of liberty,”
                  was widely spoken about. In 1793 the <a
                    href="https://www.britannica.com/topic/National-Convention"
                    class="md-crosslink autoxref">National Convention</a>
                  appointed <span id="ref313579"></span>Charles-Gilbert
                  Romme, president of the committee of public
                  instruction, to take charge of the reform. Technical
                  matters were entrusted to the mathematicians <span
                    id="ref313580"></span><a
href="https://www.britannica.com/biography/Joseph-Louis-Lagrange-comte-de-lEmpire"
                    class="md-crosslink">Joseph-Louis Lagrange</a> and <span
                    id="ref313581"></span><a
href="https://www.britannica.com/biography/Gaspard-Monge-comte-de-Peluse"
                    class="md-crosslink">Gaspard Monge</a> and the
                  renaming of the months to the Paris deputy to the
                  convention, Philippe <span id="ref313582"></span><a
                    href="https://www.britannica.com/biography/Philippe-Fabre-dEglantine"
                    class="md-crosslink">Fabre d’Églantine</a>. The
                  results of their deliberations were submitted to the
                  convention in September of the same year and were
                  immediately accepted, it being <a
                    href="https://www.merriam-webster.com/dictionary/promulgated"
                    class="md-dictionary-link md-dictionary-tt-off"
                    data-term="promulgated">promulgated</a> that the new
                  calendar should become law on October 5.</p>
                <span class="marker p1"></span><span class="marker AM1
                  am-inline"></span><span class="marker MOD1 mod-inline"></span>
                <p class="topic-paragraph">The <a
                    href="https://www.britannica.com/science/French-republican-calendar"
                    class="md-crosslink">French republican calendar</a>,
                  as the reformed system came to be known, was taken to
                  have begun on September 22, 1792, the day of the
                  proclamation of the Republic and, in that year, the
                  date also of the autumnal <span id="ref313583"></span><a
href="https://www.britannica.com/science/equinox-astronomy"
                    class="md-crosslink">equinox</a>. The total number
                  of days in the year was fixed at 365, the same as in
                  the Julian and Gregorian calendars, and this was
                  divided into 12 months of 30 days each, the remaining
                  five days at year’s end being devoted to festivals and
                  vacations. These were to <a
                    href="https://www.britannica.com/science/autumn-season"
                    class="md-crosslink autoxref">fall</a> between
                  September 17 and 22 and were specified, in order, to
                  be festivals in honour of virtue, genius, labour,
                  opinion, and rewards. In a leap year an extra festival
                  was to be added—the festival of the Revolution. Leap
                  years were retained at the same frequency as in the
                  Gregorian calendar, but it was enacted that the first
                  leap year should be year 3, not year 4 as it would
                  have been if the Gregorian calendar had been followed
                  precisely in this respect. Each four-year period was
                  to be known as a <em>Franciade</em>.</p>
                <span class="marker p2"></span><span class="marker AM2
                  am-inline"></span><span class="marker MOD2 mod-inline"></span>
                <p class="topic-paragraph">The seven-day <a
                    href="https://www.britannica.com/science/week"
                    class="md-crosslink autoxref">week</a> was
                  abandoned, and each 30-day month was divided into
                  three periods of 10 days called <em><span
                      id="ref313585"></span><a
                      href="https://www.britannica.com/topic/decade-French-chronology"
                      class="md-crosslink">décades</a></em>, the last
                  day of a <em>décade</em> being a rest day. It was
                  also agreed that each day should be divided into
                  decimal parts, but this was not popular in practice
                  and was allowed to fall into disuse.</p>
                <span class="marker p3"></span><span class="marker AM3
                  am-inline"></span><span class="marker MOD3 mod-inline"></span>
                <p class="topic-paragraph">The months themselves were
                  renamed so that all previous associations should be
                  lost, and Fabre d’Églantine chose descriptive names as
                  follows (the descriptive nature and corresponding
                  Gregorian calendar dates for years 1, 2, 3, 5, 6, and
                  7 are given in parentheses):</p>
                <span class="marker p4"></span><span class="marker AM4
                  am-inline"></span><span class="marker MOD4 mod-inline"></span>
                <ul class="list-unstyled topic-list">
                  <li>
                    <div><a
                        href="https://www.britannica.com/topic/Vendemiaire"
                        class="md-crosslink autoxref">Vendémiaire</a>
                      (“vintage,” September 22 to October 21), </div>
                  </li>
                  <li>
                    <div>Brumaire (“mist,” October 22 to November 20), </div>
                  </li>
                  <li>
                    <div>Frimaire (“frost,” November 21 to December 20),
                    </div>
                  </li>
                  <li>
                    <div>Nivôse (“snow,” December 21 to January 19), </div>
                  </li>
                  <li>
                    <div>Pluviôse (“rain,” January 20 to February 18), </div>
                  </li>
                  <li>
                    <div>Ventôse (“wind,” February 19 to March 20), </div>
                  </li>
                  <li>
                    <div>Germinal (“seedtime,” March 21 to April 19), </div>
                  </li>
                  <li>
                    <div>Floréal (“blossom,” April 20 to May 19), </div>
                  </li>
                  <li>
                    <div>Prairial (“meadow,” May 20 to June 18), </div>
                  </li>
                  <li>
                    <div>Messidor (“harvest,” June 19 to July 18), </div>
                  </li>
                  <li>
                    <div>Thermidor (“heat,” July 19 to <a
                        href="https://www.merriam-webster.com/dictionary/August"
                        class="md-dictionary-link md-dictionary-tt-off"
                        data-term="August">August</a> 17), and </div>
                  </li>
                  <li>
                    <div>Fructidor (“fruits,” August 18 to September
                      16).</div>
                  </li>
                </ul>
                <p class="topic-paragraph">The French republican
                  calendar was short-lived, for while it was
                  satisfactory enough internally, it clearly made for
                  difficulties in communication abroad because its
                  months continually changed their relationship to dates
                  in the Gregorian calendar. In September 1805, under
                  the Napoleonic regime, the calendar was virtually
                  abandoned, and on January 1, 1806, it was replaced by
                  the Gregorian calendar.</p>
                <span class="marker p5"></span><span class="marker AM5
                  am-inline"></span><span class="marker MOD5 mod-inline"></span></section>
              <span id="ref59349" data-level="2"></span>
              <section id="ref60233" data-level="3" data-has-spy="true">
                <h2 class="h3">Soviet calendar reforms</h2>
                <p class="topic-paragraph">When Soviet Russia undertook
                  its calendar reform in February 1918, it merely moved
                  from the <a
                    href="https://www.britannica.com/science/Julian-calendar"
                    class="md-crosslink autoxref">Julian calendar</a> to
                  the Gregorian. This move resulted in a loss of 13
                  days, so that February 1, 1918, became February 14.</p>
                <span class="marker p6"></span><span class="marker AM6
                  am-inline"></span><span class="marker MOD6 mod-inline"></span></section>
              <span id="ref59349" data-level="2"></span>
              <section id="ref60234" data-level="3" data-has-spy="true">
                <h2 class="h3">Modern schemes for reform</h2>
                <p class="topic-paragraph">The current calendar is not
                  without defects, and reforms are still being proposed.
                  Astronomically, it really calls for no improvement,
                  but the seven-day week and the different lengths of
                  months are unsatisfactory to some. Clearly, if the
                  calendar could have all festivals and all rest days
                  fixed on the same dates every year, as in the original
                  Julian calendar, this arrangement would be more
                  convenient, and two general schemes have been put
                  forward—the <span id="ref313586"></span>International
                  Fixed Calendar and the World Calendar.</p>
                <span class="marker p7"></span>
                <div class="assemblies">
                  <div class="">
                    <figure class="md-assembly card print-false"
                      data-assembly-id="127408">
                      <div class="md-assembly-wrapper" data-type="image"><a
                          style="--aspect-ratio: 16/9"
href="https://cdn.britannica.com/55/130655-050-E22E92E4/calendar-range.jpg"
                          class="position-relative d-flex
                          align-items-center justify-content-center
                          media-overlay-link card-media"
                          data-href="/media/1/89368/127408"><img
src="https://cdn.britannica.com/s:690x388,c:crop/55/130655-050-E22E92E4/calendar-range.jpg"
                            alt="A perpetual calendar makes it possible
                            to find the correct day of the week for any
                            date over a wide range of years."
                            data-width="1600" data-height="1200"></a></div>
                    </figure>
                  </div>
                </div>
              </section>
            </section>
          </section>
        </div>
      </div>
    </div>
    <div class="assemblies">
      <div class="">
        <figure class="md-assembly card print-false"
          data-assembly-id="127408"><figcaption class="card-body">
            <div class="md-assembly-caption text-muted font-14
              font-serif">A perpetual calendar makes it possible to find
              the correct day of the week for any date over a wide range
              of years.</div>
            <cite class="credit d-block mt-5">© Dan
              Tataru/Shutterstock.com</cite></figcaption></figure>
      </div>
    </div>
    <span class="marker AM7 am-inline"></span><span class="marker MOD7
      mod-inline"></span>
    <p class="topic-paragraph">The International Fixed Calendar is
      essentially a perpetual Gregorian calendar, in which the year is
      divided into 13 months, each of 28 days, with an additional day at
      the end. Present month names are retained, but a new month named
      Sol is intercalated between June and July. The additional day
      follows December 28 and bears no <a
        href="https://www.merriam-webster.com/dictionary/designation"
        class="md-dictionary-link md-dictionary-tt-off"
        data-term="designation">designation</a> of month date or weekday
      name, while the same would be true of the day intercalated in a <span
        id="ref313584"></span><a
        href="https://www.britannica.com/science/leap-year-calendar"
        class="md-crosslink">leap year</a> after June 28. In this
      calendar, every month begins on a <a
        href="https://www.britannica.com/topic/Sunday-day-of-week"
        class="md-crosslink autoxref">Sunday</a> and ends on a <a
        href="https://www.britannica.com/topic/Saturday-day"
        class="md-crosslink autoxref">Saturday</a>.</p>
    <span class="marker p8"></span><span class="marker AM8 am-inline"></span><span
      class="marker MOD8 mod-inline"></span>
    <p class="topic-paragraph">It is claimed that the proposed
      International Fixed Calendar does not conveniently divide into
      quarters for business reckoning; and the <span id="ref313587"></span><a
        href="https://www.britannica.com/topic/world-calendar"
        class="md-crosslink">World Calendar</a> is designed to remedy
      this deficiency, being divided into four quarters of 91 days each,
      with an additional day at the end of the year. In each quarter,
      the first month is of 31 days and the second and third of 30 days
      each. The extra day comes after December 30 and bears no month or
      weekday designation, nor does the intercalated leap year day that
      follows June 30. In the World Calendar January 1, April 1, July 1,
      and October 1 are all Sundays. Critics point out that each month
      extends over part of five weeks, and each <span id="ref313588"></span><a
        href="https://www.britannica.com/science/month"
        class="md-crosslink">month</a> within a given quarter begins on
      a different <span id="ref664715"></span><a
        href="https://www.britannica.com/science/day"
        class="md-crosslink">day</a>. Nevertheless, both these proposed
      reforms seem to be improvements over the present system that
      contains so many variables.</p>
  </body>
</html>